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Abstract—The influence of external vorticity on the laminar compressible boundary layer is examined
in the stagnation-point region of an axisymmetric blunt body. The case considered is one where the
vorticity is generated by a curved bow-shock wave formed by the body moving at a supersonic speed.
The method of solution used is due to Van Dyke and consists of solving first-order (or Prandtl)
boundary-layer equations and then solving second-order equations for the vorticity effect, where by
second-order we mean second-order in a perturbation parameter related to the inverse square root ofa
Reynolds number.

The first step in the solution of both the first-order equations and the second-order equations for
vorticity interaction is reduction of the partial differential equations to ordinary differential equations
by a Blasius Series expansion. The resulting ordinary differential equations are then integrated numeri-
cally. Results are presented for integration of the equations for the first two terms of the series for the
first-order equations and for one term of the series for the second-order equations. These results are
obtained for a variety of wall to stagnation-point temperature ratios at the vertex. The results obtained
from ntegrating these equations are compared with the theories and experiments of other authors.
Good agreement is found with the theories of some other authors when a pressure gradient which is
due to vorticity interaction is set equal to zero. It is found, however, that in general this simplification
is not permissible. Agreement is also found with one set of experimental results, but this comparison is
not very significant since the present analysis includes only the vorticity effect and not other second-
order effects which may be equally important. However, since the second-order equations are linear
the other second-order effects may be computed separately and superposed with the vorticity effect to

obtain a complete second-order theory.
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for plane flow and 1 for
axisymmetric flow;
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M,
n,

N,

P,
Pla P‘Z: pla p27

Uy, Uss g, 4,

v,
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free stream Mach number;
co-ordinate normal to the
body;

stretched co-ordinate nor-
mal to the body defined
by equation (1.4);
pressure;

first- and second-order
pressures in the outer and
inner  expansions, see
equations (1.2c)and (1.3¢);
heat transfer;

first- and second-order heat
transfer defined by equa-
tion (1.26);

body radius;

coefficient defined by equa-
tion (2.4);

first- and second-order
density in the outer ex-
pansion, equation (1.2d);
free stream Reynolds num-
ber defined by equation
(1.19);

shock Reynolds number
defined by equation (4.7a);
stagnation Reynolds num-
ber defined by equation
{4.6a);
co-ordinate
body;
entropy;
first-order entropy in the
outer expansion;

absolute temperature;
first- and second-order
temperatures in the outer
and inner expansions,
(1.2¢) and (1.3e);

velocity component in the
s direction;

free stream velocity;

first- and second-order
velocity components in the
s direction in the outer
and inner expansions, see
equations  (l1.2a) and
(1.3a);

velocity component in the
n direction;

along the

Vi Vas by, b,

Wy, W,
X, i=1,2-5,
Xy, i =6, 7-10,
Xy, 1= 11, 12-15,

Xy, i = 6, 7-10,
;= 1,24,

Greek symbols

a,

B,
Vs
5%
€,

LB

s
Ty Ty

s
P1» P2y

it

7_'1’ %27

Tlv T3y

Ta,

first- and second-order
velocity components in the
rdirection in the outer and
inner expansions, see equa-
tions (1.2b) and (1.3b);
constants defined by equa-
tions (2.2b) and (2.2¢);
functions defined by equa-
tions (3.1 a-¢);

functions defined by equa-
tions (3.3 a-¢);

functions defined by equa-
tions (3.15 a-f);

functions defined by equa-
tions (3.5 a-f).

ratio of body to shock nose
radius;

a quantity defined by equa-
tion (2.27¢);

ratio of specific heats
Cp/Co;

displacement thickness de-
fined by equation (1.31);
perturbation parameter de-
fined by equation (1.1r);

a co-ordinate normal to
the body defined by equa-
tion (2-9);

viscosity coefficient;
constants defined by equa-
tion {2.1):

density;

first- and second-order
densities in the inner ex-
pansion, see equation
{1.3d);

Prandtl number;

equation (1.29);

shear stress defined by
equation (1.29);

first- and second-order
shear stress defined by
equation (1.27);

functions defined by equa-
tion (2.7),;

function defined by equa-
tion (2.21);

stream function;
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1, $oi s Yoy first- and second-order
stream functions in the
outer and inner expan-
sions, see equations (1.2f)
and (1.3f);

w, exponent in the viscosity
law where paT;

£2, vorticity interaction para-
meter defined by equation
4.1).

Subscripts

b, condition at the body
surface;

0, stagnation point con-
dition;

o0, free stream condition.

Superscripts

*

s dimensional quantity;
', differentiation with respect
to the given argument.

INTRODUCTION
THE effect of external vorticity on the laminar
boundary-layer in the stagnation-point region
of an axisymmetric blunt body has been investi-
gated by several authors. One of the more recent
methods of investigation was that of Van
Dyke [1] where the method of inner and outer
expansions was used with a perturbation para-
meter related to the inverse square root of a
Reynolds number for deriving the first- and
second-order equations for the boundary-layer
flow on blunt bodies. Van Dyke then used first
terms of Blasius Series expansions in the co-
ordinate along the body to find solutions to the
first- and second-order equations in the stagna-
tion-point region. In this present study Van
Dyke’s method is adopted and extended by
using a viscosity law which varies as the square
root of the temperature rather than linearly; in
addition a wvariety of wall-temperature to
stagnation-point temperature ratios are con-
sidered. Also included in this paper are solutions
for the second term of the Blasius Series for the
first-order boundary-layer equations. The use
of the first two terms of the Blasius Series pre-
sented herein will give reasonably good results
for boundary-layer computations for a region
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extending back to the sonic line on blunt bodies
at supersonic speeds.

It will be shown that when the term involving
the second-order pressure gradient along the
body is set equal to zero, the results of integrat-
ing Van Dyke’s second-order equation for the
vorticity effect will agree with Probstein [2],
Maslen [3], Lenard [19] and Cheng [4], but will
not agree with Ferri, Zakkay and Ting [S].
However it will be shown that only at tempera-
ture ratios in the neighborhood of wall-tempera-
ture to stagnation-point temperature of 0-2 will
the assumption of neglecting this pressure
gradient be justifiable. Since for some time the
only solution, which included the effect of the
pressure gradient, was Van Dyke’s for a tempera-
ture ratio of (-2, wrong conclusions were drawn
about the pressure gradient’s effect. This
happened because the displacement thickness for
this particular temperature ratio is so small that
its effect is negligible and therefore the second-
order pressure gradient also becomes negligible.

Since the second-order equations are linear the
pressure gradient due to vorticity interaction can
be added to one of the other second-order
terms such as the term due to displacement
thickness. In most cases, however, where a
complete second-order theory has been com-
puted this has not been done and the term has
been completely neglected. For a complete
discussion of this and various ways to divide
the second-order effects, see Van Dyke [20].

1. FORMULATION OF THE PROBLEM

Van Dyke [1] derived the first- and second-
order boundary-layer equations for a plane or
axisymmetrical blunt body at zero angle of
attack. In deriving the equations he started from
the full compressible Navier-Strokes and energy
equations, and he used the systematic method of
inner and outer expansions due to Lagerstrom,
Kaplun and Cole. He has found that there are
seven second-order effects, two of which are the
effects of entropy and enthalpy gradients, or
when taken together, the vorticity effect. We
shall concern ourselves here only with the second-
order effect of vorticity.

. Co-ordinate system
A body of revolution lies in a flow field, with
constant velocity U%, (parallel to the body axis)
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at infinity. The density p% and temperature
T, are given. The specific heat C% and Prandt]
number o are assumed to be constant, and the
gas is assumed to be perfect. The co-ordinates
of a point in the flow field and the velocity

components are described by Fig. 1.

VT

Fig. 1. Co-ordinate system.

11. Dimensionless quantities

In the following the unstarred quantities are
the dimensionless and the starred quantities
dimensional. The non-dimensional variables
and constants remain bounded in the stagnation
region as M. goes to infinity. Co-ordinates and
velocity components are explained in Fig. 1.

The quantity j = 0 for plane flow and 1 for
axisymmetric flow.

23
§= »S;}, co-ordinate along {1.1a)
a body surface;
%
0 = ’%, co-ordinate normal  (1.1b)
a to body surface;
£ ]
a = 2* = ] nose radius: (1.1c)
“* .
u= s velocity component  (1.1d)
* parallel to body
surface;
U*
v e, velocity component  (1.le)
v normal to body
surface;
p*
P =g pressure; (1.19)
o0 oL

I.
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P*
p = p* s density; (1.1g)
Tﬁ
T s U;?,/C absolute temperature; (1.1h)
o+
= TS g stream function: (1.1
S*
8 = C; entropy: (.13
h*
I == s enthalpy; (1.1k)
p¥(T™) . Hici
T Q*('Ufg/(?j;)’ viscosity coefficient;  (1.11)
s
T == LU shear stress; {1.Im)
S heat transfer: 1.in)
7 By € anster; (I.in
& 85{
d¥ = e displacement thick~  (1.10)
nesst;
¥
TLI + 12y — M2
Sutherland constant:  (1.Ip)
U™ pie
R = xay »
Reynolds number: (1.1g)

e = [HUZ/ICHI P Una* 2,
perturbation parameter. (1.1r)

Hereafter ail unstarred quantities will be

considered to be non-dimensionalized.

111, Perturbation scheme

Van Dyke [1] took the following expansion
scheme with the perturbation parameter
e = [p¥UZC) e, Usa*V®.  This scheme
seems reasonable as long as the body is analytic.
We could have first left the dependence on «
unspecified in the expansion, and upon substi~
tution into the full Navier~Stokes and energy
equations we would have found that when we
consider the boundary conditions the only

+ The displacement thickness is usually divided by a
Reynolds number in non-dimensionalizing it, which is not
done here.
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meaningful expansion scheme is the one given
below.

Outer expansion
u@s,n; € ~ U (s,m)+ eUp(s,n) + ... T(1.22)

vis,n; &) ~Vi@s,n) + eVo(s,n) 4+ ... (1.2b)
pl,n;, ey ~P(s,n)+ ePs(s,m)+ ... (1.2¢)
p(s,n; e) ~ Ry(s,n) + eRy(s,m) ++ ... (1.2d)
TEne~Tis,m+el(,n+ ... (12
G, n; &)~ (s, m) + edy(s,m) -+ ... (1.20)
Inner expansion

uls,n; &) ~u (s, Ny + e, (5, N)+ ... (1.33)

v{s,n; &) ~ ev (5, N+ €0,(s, N)+ ... (1.3b)

p(s,n; € ~pi (s, N)+ epy(s, N) + ... (1.3¢)
pls,n; €) ~p(s, N)+ epy(s, N) -+ ... (1.3d)
T(s,n;€) ~t,(5, N+ eto(s, N)+ ... (1.3e)
s, n; &) ~ey(s, N) + (s, N)+ ...
(1.3f)

In the above expressions the normal co-ordinates
are related by

F4)
N=". (1.4)

It is also necessary to expand the viscosity in a
Taylor series expansion about 7, as follows:

p(T) =p(t) + e’ () ty+ ...

with
'O
(1) = (5’;)] . (1.6)

The perturbation parameter ¢ can also be
expressed as

1 Jely —DMLT, }}”2
3 3 = 1 .7

V(R | wTy) (.7

If it is assumed that the viscosity coefficient u

is proportional to T to some power w then ¢, the
perturbation parameter, can be written as

follows.
[(y — 1) M2 ]2
= e 1.8
V(R=) (1.8)
Here M« is the free stream Mach number, and

R the Reynolds number formed with the nose
radius as reference length.

(1.5)

€ ==

1 The symbol ~ means asymptotically equal to.
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In ali of the work contained in this report the
definition of e used will be that of equation (1.8)
and « will be taken to be 1/2.

The expansion schemes used herein seem
reasonable since the boundary-layer thickness at
high Mach numbers can be shown to be 0(e¢)
whereas the thickness of the bow shock wave is
0(€2) and the shock-layer thickness itself is 0(1).

Implicitly contained in the above is the
assumption that the viscosity varies as the
absolute temperature to some power w, for
example when w is taken to be 1 this would be
the linear-viscosity law. This assumption is not
necessary, and a more exact viscosity law such as
Sutherland’s could be used. Later a Blasius
Series will be used for solutions near the stagna-
tion point. By using the power-viscosity law,
Blasius Series solutions in the boundary layer
can be obtained by knowing only the ratio of
the temperatures across the boundary layer.
When Sutherland’s law is used, however,
solutions depend not only on the temperature
ratio across the boundary layer but on the free-
stream conditions. This means that if the Suther-
land viscosity law is employed we cannot tabulate
solutions for different wall-temperature to stag-
nation-point temperature ratios, but must
integrate the differential equations resulting
from the use of the Blasius Series every time the
free-stream conditions are changed.

IV. Boundary conditions

The proper boundary conditions for the
Navier-Stokes and energy equations when slip
and temperature jump at the body surface are
neglected, are:

Conditions at the body
u(s,00=0,0(5,0) =0, T (5,0} = Tp (5).

{1.9a, b, ¢)
Upstream conditions
u-+ v (1.94)
1
p>1 J (1.9F)

Where n and v are taken to be the velocity
vectors and i is a unit vector parallel to the body
axis in the streamwise direction.
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V. Matching conditions

The inner expansion is valid in a region of
U(¢) near the body and the outer expansion is
valid in the region outside this region of O(e).
In substituting the inner and outer expansions
into the Navier-Stokes and energy equations the
resulting partial differential equations from
taking successive terms in ¢ are of lower order
than the original equations. This means that we
cannot in general expect the resulling equations
to satisfy all of the boundary conditions which
the original Navier—Stokes and energy equations
satisfied. For instance we do not expect the outer
expansion to satisfy the condition of zero u
component of velocity at the wall, or if slip is
permitted the slip condition will be violated. This
means that the “lost” boundary conditions must
be replaced by something which makes the
problem determinate. These conditions are
found to be the matching principle of Lager-
strom 16]. A good explanation of the matching
principle along with a more rigorous discussion
of inner and outer expansions in general can
also be found in a paper by Erdelyi [12].

The matching principle can be stated as
follows:

m-term inner expansion of (p-term outer
expansion)

== p-term outer expansion of {m-term mner
expansion).

Van Dyke [1] applied this principle with
m=p and m=p—1 and obtained the
appropriate matching conditions.

This way of applying the matching principle
perhaps obscures what is actually taking place
in the matching process, and a more simple
procedure is possible. It is desired to find the
appropriate values which the terms in the outer
expansion should approach at the wall and the
values which the terms in the inner expansion
should approach as N, the inner variable, goes
to infinity. The matching principle supposes that
there is a relationship between these two be-
haviors, or an overlap region. If we suppose this
then the following should seem reasonable.

Suppose we have some quantity in the flow
field, say v the component of velocity normal to
the wall. Then in the outer region v is given as
follows from equation {1.2b}:

I. FLUGGE-LOTZ

e~ Vi{s,n + eVys,n)+ . ... (1.10a)

In the inner region v is given as follows from
equation (1.3b).

v~ et (8, N)+ €vy(s, N)

... (1.10b)

There are two ways in which we will match
these quantities. The first is performed in the
overlap region or the region in the inner variable
where N - oo, This is done as follows:

The inner expansion in this region simply
becomes:
p~er (5, N)+ (5, N)+ ... a8 N> oC.

(1.10¢)

For the outer expansion we must expand the
terms in a series about n = 0 as follows:

o~ ¥y (5, 0) + n¥Vinls, 0) 4 (#32)
Vina (5,00 + ... + € Vo (s.0) + . ..
or in inner variables
e Vi (5,0) - eNVin (5,00 e ¥o{s,00 . . .
(1.10e)

Therefore in the overlap region of the outer and
inner expansions we have for the outer expansion

(1.10d)

e~ V(5,0 e NV (5,00 + e V5,00 + ...
as N -» o, {1.10)

Therefore since we have assumed that the be-
havior of these functions are the same in the
overlap region we have from equating co-
efficients of equal powers of ¢ the following:

Vi(s,0) =0 (1.10g)
2 (8 N~ NV (5,0 + V(5,00 as N — oo,
{1.10h)

This is exactly the same result as obtained by
Van Dyke [1], equation (2.40b). This procedure
gives a result equivalent to taking m = p in the
matching principle.

Next we can match in a similar manner by
expanding the inner expansion to N = 0 in an
asymptotic series about a large value of N. We
then equate this to the value of the outer ex-
pansion at n = 0. We have again assumed here
that the inner expansion for large N behaves in
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the same manner as the outer expansion for
small ».

For the inner expansion we have equation
(1.10b). Therefore expanding to N = 0 about a
large value of N (let us say N,) in an asymptotic
series gives:

v~ €[ry (s, No) — Novan (5, No)l + . ..

as Ny — oo. (1.101)

We notice that in the asymptotic series expansion
for v, (5, N) above only two terms are needed
since rynw (s, N} and all higher derivativesin N
are exponentially small as N goes to infinity.
From the outer expansion we getatn =0

0~ Vi(s5,0) 4+ € Vo (5,0) + ... (1.10p)

Equating coefficients of equal powers of € we get
as before

Vi(s,0) =0 (1.10k)

and in addition
Va(s, 0) = lim [r, (s, N) —

N—co

Neyw (s, M) (1.10D)

which is Van Dyke’s equation (2.39) and is
equivalent to the result of using the matching
principle form =p — 1.

This matching principle is perhaps the most
crucial part of the analysis since the use of it
definitely gives a second-order pressure gradient
due to vorticity interaction as will be seen later.

Still another, and the most physical way of
seeing the matching of the v components is
given as follows by using the stream function.

Physically we visualize a blunt body in a flow
field. To the first approximation there is an
inviscid flow around the body with a boundary
layer (first order). Then in the second approxima-
tion the boundary layer increases the thickness
of the body and the outer flow sees a body which
is thickened by this displacement thickness.
Then to the second approximation in the outer
flow, the stream function should vanish at the
surface of a body which consists of the original
body plus displacement thickness. As will be
seen later in equation (1.31) the displacement
thickness can be written as

« _ 171 e
’ N

] dN.  (1.10m)
Y
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In terms of the first-order stream function in the
iner region this becomes (see 1.3f)

. ¢1(Ss N)
*
* = 6]\13_{1‘; [N s, V) (1.10n)
where
Pin == ripy and iy = — Hpuy (1.100)

define the stream function.

Then applying the boundary condition for
4 (5, n) at the outer edge of the new body given
by the original body plus displacement thickness
we have

F(s,8%) =0 = (5, ) + ey (5, 8%). (1.10p)

It is understood that the zero appearing above
means zero only to terms of order e.

Now expanding the above expression in a
Taylor series about the old body surface we get

0=4,(50) 4 5* J1n(s,0) + ...
+ ehy (5,0) + .

Using the relation for §* we have
$1(5,0) =0

. o $1n (s, 0)
a(5,0) = lim [y (s, N) 52" s

- Nlj’l'ﬂ (S, 0)].
Now we use the fact that
$1n (5, 0) = Yn (s, N) as N - oo

which has been known since the boundary-layer
theory of Prandtl or is known from matching.
Therefore as a final result we have

o (s, 0) = lim [y (s, N) — Njun (s, N)] (1.100
N-—>oo

(1.10q)

{1.10r)

(1.10s)

or differentiating with respect to s and using some
other relations we can show that
V2 (s, 0) = lim [ty (s, N) — N vyn (s, N)]. (1.10w)
N—sw

The analysis above is not very complete and
reasoning such as this can lead to serious error,
but in this case it does give some further physical
insight into what the matching principle gives.

V1. First- and second-order equations for the
boundary layer
First the full compressible Navier-Stokes and
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energy equations are written in the co-ordinate
system of Part 1, non-dimensionalized by
equations (1.la-r) and expanded first into the
outer expansion and then into the inner ex-
pansion by equations (l.2a-e) and equations
(1.3a—¢). Then by collecting terms in successive
powers of ¢ and equating these to zero we
obtain the partial differential equations describ-
ing the outer and inner flows. By simplifying
these results we can obtain the following equa-
tions. They comprise both plane and axisym-
metric flow. The exponent j equals 0 for plane
flow and equals 1 for axisymmetric flow. The
subscripts s and N indicate differentiation, and
S, denotes dS,/d, where S; and ¢, are the first-
order entropy and stream functions respectively
in the outer inviscid flow. (The conventional
entropy and stream function obtained from the
compressible Euler equations.)

FIRST-ORDER BOUNDARY-LAYER
EQUATIONS
Differential equations

Continuity
(" pyuy)s + (Hpywr)n = 0. (1.11)
Momentum
p1 (gttrs + vyusn) — (puan)n = (RUUsrs)n—o.
(1.12)
Energy
0 7 0
Pl(ula—s“}‘vlﬁv)(ﬁ‘f‘ u) 8N[ (—‘]tl
+ %u%)N] = 0. (1.13)
Pressure condition
pit1 = (RiTn-o. (1.14)
Boundary conditions
,(5,0) =0, (5,0) =0 (1.15a, b)
t;(5,0) =T {s) (1.15¢)
or a condition on the wall heat transfer.
Matching conditions
1, (s, N) ~ U, (5, 0) as N -> oo (1.16a)
(s, N) ~Ty(s5,0) (1.16b)

These are the familiar compressible boundary-
layer equations in non-dimensional form.

1. FLUGGE-LOTZ

SECOND-ORDER BOUNDARY-LAYER
EQUATIONS INCLUDING THE EFFECT
OF VORTICITY DUE TO ENTROPY
GRADIENT ONLY

Differential Equations
Continuity

[ (pyths + patty)ls + 117 (p10 -+ pov)lv = 0.

(1.17)
Momentum

py (yttas + wotiys + vidan -+ Vot N
+ po (ttrs + vi1n) — (utan + RNt N
— 1 (S| RT,V)n—. (1.18)

Energy
0 0
P1 (“1 75 + o ETV (tz + wyty) +
7] o) o ) 0"
[P1 (“28_S+ UZéTv) + pe <u16_s+ bl@TV)

Ly 2
htsu) — 5N

[ (o7t ty + wup)N

+ (0’“1  + %uf) Ntz] == 0. (1.19)
Pressure condition
pils + poty = 0. (1.20)
Boundary conditions
Uy (5,0) = 05 (5,0) = 1,(5,0) = 0. (1.21a, b, ¢)
Matching conditions
Uy (8, N) ~ — Nri (S{RTy)n=0 (1.22a)
as N - o0.
t, (s, N) ~ Nri (SR Up)n—o (1.22b)

The term S;(0) appearing in the above
equations is defined as below:

Ay — M2, — 1) ot
T RyMEL —(y — D2 + (& — 1)M2]
(1.23)

where 01~/ = 0 for plane flow and 1 for axi-
symmetric flow. a is the ratio of body to shock

oL
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nose radius. Therefore we see that there is no
effect of vorticity for plane flow to the second
order.

There is also an effect of vorticity due to
H{(0), the enthalpy gradient. However in flows
where the enthalpy is constant throughout the
flow field in front of the shock wave, it will
remain constant across the shock wave and
H(0) = 0. This is the usual case and we will
therefore not consider this effect here.

The term on the right-hand side of the second-
order momentum equation (1.18) is actually the
second-order pressure gradient due to vorticity
since it can be shown that

Pys = H[RI T15Valn=0 (1.24)
Various authors have said that this effect does
not exist or that it is negligible. In the numerical
examples (Fig. 16) it will be shown that this
effect is not only important, but also that the
second-order terms in heat transfer and skin
friction obtained by neglecting it can be off by
a factor of 2 or more.t

Appearing on the right-hand side of the
second-order momentum equation (1.18) is the
quantity ¥, (s, 0). It has been shown in equation
(1.101) that in applying the matching principle,

Vo (s, 0) = lim (v, — Noyw). (1.25)

N>

This means that we do not need to solve the
second-order problem for the outer flow in
order to calculate the second-order effect of
vorticity in the boundary-layer. As would be
expected the first-order equations for the outer
flow do not show a viscosity influence and there-
fore turn out to be the familiar compressible
Euler equations.

VII. Heat transfer, shear stress, and displace-
ment thickness
The non-dimensional heat transfer and shear
stress are defined as follows:

Heat transfer

S S 2
g = p’f;oU’;fa’U’ '5’1?—€41+€2Q+~---

(1.26)

t Added in proof: This pressure gradient term could be
included instead in the term for the effect of displacement
thickness, however most authors fail to include it in either
place.
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Shear stress
1 du* . -
f:m#*—a—’—z—’gzefl‘{"Ezfz’i—-...(1.27)

In terms of the first- and second-order
boundary-layer quantities the non-dimensional
heat transfer and shear stress are then found to
be as follows:

Heat transfer

1 ot 1 ot
qg=— f;ﬁ‘(ﬁ)é}%“ fg;[ﬂa(&)ﬁ?

ot
4w’ (1) zgéﬂ +.... (128
Shear stress

ouy
= EFL@—NT

7

ou ou
2 [ug—;»{- w (tl)t%}} e
(1.29)

The displacement thickness for the first-order
boundary layer is defined as follows:

* iUy
8% = | |1 —2L ) dp*
L [ (RlUI)]”:O

Using non-dimensional quantities we therefore
get:

(1.30)

5 * Pith
O = ] — = dnN. 1.31
j [ uwa]n:o (13

2. SOLUTION OF THE FIRST- AND
SECOND-ORDER BOUNDARY-LAYER
EQUATIONS

There are few exact solutions known to the
first-order compressible boundary-layer equa-
tions. These solutions are for either very special
flow conditions where the governing partial
differential equations can be solved directly or
for conditions where similar solutions can be
obtained by reducing the partial differential
equations to ordinary differential equations and
integrating these equations numerically. Some
of these solutions could be extended to the
second-order boundary-layer problem, however
since we are interested in solving the problem
of the boundary-layer on an axisymmetric blunt
body of arbitrary shape it seems advisable to
proceed in a manner which will allow us to solve
the equations when arbitrary boundary and
external conditions are given. This suggests the
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use of a numerical method of solution, such as
a modification of the finite difference method
given by Fliigge-Lotz and Blotiner [8]. Their
method was developed for the plane case only,
but it could be easily modified to the axisym-
metric case, In order to use such a method it is
necessary to find velocity and temperature
profiles near the stagnation-point for starting
values for the finite difference scheme. It seems
that an ideal method of finding these starting
profiles 1s the use of a Blasius Series as given by
Van Dyke [1] where the velocities, temperatures,
etc. are expanded in power series along the body
and the resulting ordinary differential equations
are integrated numerically. The first term of these
series will give the solution near the stagnation
point. Second and third terms in the series will
give greater accuracy for the computation of
flow quantities away from the stagnation point.
The Blasius Series may converge in the entire
subsonic region, however since we are interested
in calculating quantities in the boundary-layer
at points on the body further back than the
region of convergence of the Blasius Series it
seems advisable to start with the finite difference
scheme as near the stagnation-point as possible.
We will therefore find solutions to the problem
for the first two terms of the Blasius Series for
the first-order boundary-layer equations, and
the first term of the series for the second-order
effect of vorticity with the idea of later using
these results to proceed downstream with a
finite~difference method.

1. Mangler, Howarth, Dorodnitsyn
mation

Hayes and Probstein ([2], p. 290) have used a
transformation which includes the Mangler and
Howarth-Dorodnitsyn transformations to trans-
form the first-order boundary-layer equations
into a form where similar solutions can be easily
obtained. A Blasius Series (p. 322) is then used
in the transformed variables to obtain ordinary
differential equations for the solution of the
blunt body problem. The same procedure could
be used here for both the first- and second-order
equations and solutions in the transformed
variables could be obtained, however it seems
that it would be advisable to stay as mnear the
physical variables as possible. This is especially

transfor-
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important when it is intended to use the resuits
as starting values for solving the boundary-layer
equations by the finite-difference method of
Fliigge-Lotz and Blottner [8]. Their method I
uses the physical variables and method II uses
the Howarth-Dorodnitsyn transformed vari-
ables. This means thatif the physical variables are
used for the stagnation-point solutions it will be
much easier to go directly to method I and will
also be easy to use method II. It is also desirable
to stay as close to the physical variables as
possible since it is easier to see how the flow
quantities are behaving in physical variables
rather than visualizing them in the transformed
variables. We might also consider using the
Mangler transformation to transform the axi-
symmetric flow case to an equivalent two-
dimensional flow problem. However, the use of
the transformation is disappointing, since the
resulting pressure gradient on the transformed
blunt body, a transformed sphere for example,
goes to infinity like 1/§V/® as § — O where § is the
Mangler transformed variable. This means that
the use of a finite difference method near the
stagnation point of the transformed body would
prove difficult. The Mangler transformation also
does not offer any advantage in solving the
equations by a Blasius Series method and there-
fore there seems to be no reason for using it.
Another reason for using the physical variables
is that if transformations of the type given by
Hayes and Probstein [2] are used on the second-
order equations (1.17-1.20), the resulting ex-
pressions become very complicated. For these
reasons the expansions used will be obtained
from expanding directly in the physical di-
mensionless variables.

1. Blasius Series for the solution of the first-
order boundary-layer equations

Following Van Dyke [1] we expand the flow
quantities in a Blasius Series. The choice of odd
and even powers of s in the expansion can be
explained by observing that the ¥ component of
velocity must be an odd function of s whereas
all other flow quantities must be even functions
of 5. Subscripts 10 mean dimensionless inviscid
stagnation-point quantities, i.e. Py, is the di-
mensionless inviscid stagnation-point pressure.

The expansions for the outer flow quantities
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evaluated at the body are as follows:
Pl(S,O) :P],B(l '_77252 _774S4+ ..¢)
Up(s,0) = wys -+ wes® + ...

where it can be shown that

2.n
(2.2a)

—1 1/2
Wy == (27/7_ T10 772) (2'2b)

_m(m
2 (2y+ )

The body temperature and radius are expanded
as follows:

Ty (s) == T1g(bg + bos® + .. ) 2.3)

F(s) == sT (1 -+ jres? + ... (2.4)

By introducing the stream function we can

satisfy the continuity equation (1.11). The

Blasius Series expansion for the first-order term

of the stream function is as follows: (see equation
1.3f)

b 6. N) = (F20120) Vst i)

-+ wymafy (n)s® -+ (2.5)
Where the stream function satisfies the following
relations:
Yyan = rlpyn, drs = — rHpy. (2.6)
The expansions for the temperature and
viscosity are as follows:

18 NY=Tyo[r1(n) + mery ()s®> + ... ] (2.7)
p (1) = pyo [g1 () + mags ()s® + .. ] (2.8

Where in all of the above expressions % is
defined as

and

(2.20)

2.9

From the relations (2.1) and (2.7) we find that
the expansion for the density has the form

1
e[ (2 )]

Expansions for the velocity components, shear
stress, heat transfer and displacement thickness
follow easily and are given below:

’ ’ ’ 73
Uy = wyrif 1§ 4 wymy [”ﬁf 3+ 7ufy (;‘
‘ 1

Fr=s2)] e

(2.10)

(2.11)
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1/2
n=— (g2 fnG+ nns

+ ymy {( J+ D st G+ Dnfi (T:

+1ﬁ~j;’;‘§)]s2+...}

71 = @wympPyop o)? (g1 (S ;)15

(2.12)

!’ y3 ' 3
+md e S + [ﬁfg +nf] (~

+1 aﬂ-“)]}ﬁ +.. ) (2.13)
My ,
- Ty . 1/2 ' .
=" (w1 Ryop10)2 817y + 73 (8174
+ gt L] 219)
. o \V2
. _
o= (WlRm) 31—1»?0 Yq fl ’”'2 {fs
Ty
(E}g 4)’“ )fl] s+ } (2.15)

The limit as 5 - oo of n — f; in the displace-
ment thickness expression also appears later in
the second-order equations, and will remain
finite in the limit.

Substituting expressions (2.7)-(2.12) into equa-
tions (1.11)~(1.16) we obtain the ordinary differ-
ential equations for the first two terms of the
series.

First terms

i)Y + G+ DAGSY —nf 2= —1

(2.16a)
[er) + oG+ Drfi=0 (2.16b)
[0 =0,f(0)=0,7(0) =b, (2.16¢c)
fi(@)=1,7(0) =1 (2.16d)
Second terms
[gs (f;"l)' + & (f;"'s +f;71)']' — 3f;273

—4f{nfs + G+ D fa
+U+ DAL m+ Sy =1—222

20 fE ,’7 32y — 26 (fim) + 1]
(2.172)
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1 ’ Y : . ’
= [g3T] + 3173} - 2f173 -+ (J -+ 1)f173

+0+9ns =27 ) Uim

—a (i) + % A (2.17b)
@ =010 =0, @ == (2170)
3 Ty 3

S (0) = =t et i |
? (2.17d)

-5

The equations for the first terms represent the
flow in the region near the stagnation point.
The second terms allow greater accuracy away
from the stagnation point, and higher accuracy
is obtained by using third and higher terms.
Integration will be carried out for the first and
second terms only. The equations for the first
term are non-linear and will present the greatest
difficulty in integration. The equations for the
second terms are linear and as in the incom-
pressible case can be divided into universal
functions and integrated once and for all once
b, is chosen in the equation for the first term.
(See for instance Schlichting [9], p. 185 for the
incompressible case).

73 (00) =

I11. Blasius Series for the solution of the second-
order boundary-layer equations for the
effect of vorticity

In a manner similar to Section 1I we expand
the second-order equations. The second-order
term in the stream function, ¢,(s, N), satisfies the
second-order continuity equation (1.17) by
taking

PN = 1 (pyt + potty) (2.18)
thos = — 11 (pyta + paty). (2.19
Then for the same reasons as in the first-order
equations (Section I, paragraph 1), we take
oo, Ny = 0TI () 514 1, )+
(2.20)
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T 1810
1y (5, N) = ‘°S<0>(R “‘) [ra (o) + ... ).

220

From equations (2.21), (2.7) and (2.10) along
with (1.20) we find the expansion for p,

Ry Ty S;Q(OE (RIO Mo) 2 F'_z + ]

Wy Wy 72

f2 =

(2.22)
Equations (2.18) and (2.19) yield the expansions
for the second-order velocity terms

- R
U, = Ty S| (0) ( il “‘)

Wy

[(rofs+ mf)s+ .1 (223
Tm IOS O
n= 120300 1) e,
-+ 'Tgfl) "{" . .}. (2.24}

Second-order shear stress and heat-transfer
effects are given by

7y = pigg Ryg Tyo S; (0) { [gl (ruf3 + 7 f)

d , .
+ dg} 75 (7, f,)'] P l (2.25)
7'1 J
LRioB10 gy o o [T
o= — 1‘0 M T3, 81 (0) 4{ {gﬂz
o dgy 1
| 4o (2.26)

Substituting these expressions into equations
(1.17-(1.22) we obtain the differential equations
for the first terms of the series for f; and =, and
the necessary boundary conditions.

i e, d ol
|6 Gt sy g |

+ G+ DAGS, +nf) +
G+ Dfalmf) — 20 f1fr— 7af 2 =28

(2.272)
(@) + (1 + ) o (fhimy + fr) =0 (2.27b)
£ (0) =0,1,(0) =0, 7,(0) ==0  (2.27¢)
FU @)= — 1, m(®) =0  (227d)
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with
B = lim ( — f). (2.27¢)
n—>0

The 28, term on the right-hand side of equa-
tion (2.27a) comes from the second-order
pressure gradient due to vorticity interaction. In
its original form (before specialization to the
stagnation point region) it appears on the right-
hand side of the second-order momentum
equation (1.18). The second-order pressure
gradient is given as follows from equation (1.24)
with j = 1.

Pas =T (R% Tl S; V2)'ﬂ=0-

From equation (1.25)

Ve = lim (v, — Noiw).

N—oo

Near the stagnation point using equations
(2.12), (2.16¢) and (2.16d) we have

o \V2
Vg(s,())szl(mel) im(Gp —f)+....

>0
(2.271)

Therefore we get for Py near the stagnation
point

, w. 1/2
Pas =25 Ty, S| (0) R, (;—”’“’)
10

lim@m—fy+.... (2279
Where lim (y — f;) = B, from (2.27e).

7>

We now see how the second-order pressure
gradient near the stagnation point depends on
B;. We also see from equation (2.15) its de-
pendence on the displacement thickness.

The solutions of equations {2.27) represent the
second-order effect of vorticity near the stag-
nation point. Further terms can be found,
however they will become quite complicated
since they will involve the first two terms in the
first-order equations and the first two terms in
the second-order equations for the vorticity
effect.

IV. Viscosity law for high free stream Mach
numbers and temperatures

The viscosity law will be taken to be Suther-

land’s, and will reduce to a simpler law for high
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free stream Mach numbers and temperatures.
This law can be written as follows:

I"‘* t* + C* t* 3/2
— r — —
e (i)
Where u; and £ are reference viscosities and
temperatures respectively. C* is a constant which
when taken to be 198-6°R gives a good fit of
experimental data to the Sutherland law. Using
the relation (1.11) we non-dimensionalize the
viscosity law so that

(2.28)

i 1 + C, 3/2
k=TT (t) (2.29
where
Cp*C*
C = «l’m— . (2.30)

From equation (2.7) we have for the first-order
temperature the expansion

Lis NY =Tyl +mra (s + .. .1

Therefore substituting this into equation (2.29)
and expanding in powers of s we find for the
first-order viscosity term

u(ty) = (T, "'1)3/2(l + )

1 myTy [Them +3C"7 ,
(Tw 1+ c’ + 2:; {(Tm T+ C,)zj’ LR .}.
(2.31)

Therefore the coefficients in equation (2.8)

#(t) = pro [81(0) + moga(m)s? + .. ]
are determined with

1+ C’
Mg = (Tm)s/z m~ (2-32)
We find that
T+ C'
- 32 10 7 M~
g = (1) Toari 4 C {2.33a)

(T + C) (T gt 3C)
2Ty m + 6)2—— (2.330)

when Sutherland’s law is used. With the
abbreviation

gs = ()% 7,

C__Clw__*C* _ C*
ﬁTlo_U:élepu [lT:3+ %(7 - 1) M%o]
o

(2.34a)
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we get

14 C
&= (71)3/2 7-1 —}iic (2.34b)
(4 O)(r+30)
gs = (1)V2 74 . T 1C)2 . (2.34¢)

From equations (2.34b and c) along with (2.34a)
we see that when the denominator is sufficiently
large (i.e. large free stream Mach number and
temperature) C can be neglected in comparison
to =, and 1. For this case we get

, dg 1 T
& = (m)"%, d-r: =3 ()13 gy = 23 ()12

(2.35a, b, ¢)

We will use this viscosity law in the integration
of equations (2.16), (2.17), and (2.27). We could
use the more exact Sutherland law, however we
would have to integrate the equations every time
the free stream conditions are changed (7, and
M) due to the presence of the constant C. How-
ever with equations (2.35) we need to know only
bo = T4(0)/T;4, the ratio of temperatures across
the boundary layer at the stagnation point, in
order to integrate the equations.

3. INTEGRATION OF THE ORDINARY
DIFFERENTIAL EQUATIONS RESULTING
FROM THE BLASIUS SERIES

The ordinary differential equations (2.16) for
the first term of the first-order boundary layer
equations are non-linear, and due to their com-
plexity must be integrated numerically. Modern
digital computing machines make this problem
simpler even though they do not eliminate all of
the problems associated with integrating such
equations. After the solutions are obtained for
these equations, the solution of the equations
for the higher order terms will be simpler
since the equatipns for these terms are linear.
The difficulty with the non-linear differential
equations for the first terms arise because of the
boundary conditions. The two non-linear equa-
tions present a system of fifth-order and conse-
quently need five boundary conditions. Three of
these conditions are given at » = 0. The re-
maining two conditions are given at n = oo.
This is known as the two-point boundary value
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problem. The procedure used for the integra-
tion was the fourth-order Adams predictor
corrector method with accuracy to approxi-
mately five decimal places. The boundary
conditions at infinity were satisfied by guessing
two conditions at n = 0 and integrating to
n == 5 and seeing if the conditions at infinity are
met. The value of » = 5 was used since it was
found that it was sufficiently large for checking
that the unknown functions approached their
correct values at infinity. The initial estimates
were obtained from Table ! of Cohen and
Reshotko [10], where a similar problem was
solved using a linear viscosity law. Newton's
method as given in Appendix B of Reshotko
and Beckwith [11] was then used to compute
new starting values and repeat the integration.
It was found that after a few trials the procedure
converged to the correct boundary conditions.
In integrating the second terms for the Blasius
series for the first-order boundary-layer equa-
tions, universal functions were obtained which
depended only upon the ratio b, of wall to
stagnation-point temperature at the stagnation
point. This requires the solution of four uni-
versal problems as will be seen later [see (3.5a)],
and the superposition of these four problems
gives the complete solution for the second terms.
The equations for the second-order effect of
vorticity at the stagnation point were also solved
and required only one solution since they de-
pended only upon the ratio of wall to stagna-
tion-point temperature.

I. Variables used for the computation of the
boundary-layer quantities

In integrating the equations on the computer
it is convenient that the equations be expressed
as a set of first-order differential equations. The
set of two differential equations is therefore
reduced to a set of five first-order equations as
follows:

First-order  boundary-layer
Section 2, IT). Let

X, =fi Xo=f/n (3la,b)

X, :gl(fll ), Xa=m, Xs=g '7'1’-
(3.1c, d, ©)

Therefore simplifying and using equations (2.16)

quantities (see



THE LAMINAR COMPRESSIBLE BOUNDARY LAYER

we can get five first-order differential equations
for the first terms of the Blasius Series for the
first-order boundary-layer equations with j = 1
(axisymmetric flow). These equations will not
be given here since they can easily be obtained
by substitution.

The corresponding boundary conditions are:

atn =0
Xl(o) = Xz(o) =0, X4(0) = by

aty = o

(3.22)

Xy(0) = Xy(00) = L. (3.2b)

For integrating equations (2.17a and b) we let

Xe=f3 (3.32)
X, =fima+fin+Hn ( 1 "'1'2) (3.3b)
X, = ggj Xy + g X! (3.30)
Xy =13 (3.3d)
Xio=8s7 + &1 75 (3.3¢)

Using equations (2.17) and simplifying we can
get the equations for the second terms of the
Blasius Series for the first-order boundary-layer
equations with j = 1. As in the case for the first
terms these equations will not be given since they
can also be obtained by direct substitution.

The corresponding boundary conditions are:

Aty =0
X, (0) = X, (0) =0, X,(0) = =

T

(3.4a)
Aty =

I, =
X7 (0) =4y ‘?“‘2*;%

X, (00) = — (*y__:l)

It is important to bear in mind that the equa-
tions for X to X, are linear in the dependent
variables and that therefore superposition will be
permissible. This fact will facilitate the solution
for the given boundary conditions.

In the differential equations for the variables
and the boundary conditions (X, to Xj,) there
are five parameters involved. If we assume that

(3.4b)
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y == 14 and ¢ = 0-7, and we are only interested
in this case, then the number of parameters
reduces to three which are by/m, my/n% and
1 — rg/my. Therefore, to introduce universal
functions which when solved determine the
second terms once and for all for a given b,, we
let X; where i = 6, 7, 8, 9, 10 be the following:

b
Xi = Xix + 2 X+ 2 Xug + (1 - fi‘) Xis
Ty w5 79
(3.5a)
with boundary conditions.
Aty =20
Xo1 (0) = Xy (0) = Xg3(0) = Xs4(0) =0
(3.5b)
X71(0) == X'zz(o) == Xva(o) = X74(0) =0
(3.5¢)
Xsl(o) =0, ng(O) =1, Xg (0) =0,
X, (0) = 0. (3.5d)
Aty = o
X (0) = /4y, Xo2 (00) = 0, Xo3 (0)
= 112, Xqs (Oo) =0 (3.5¢)
— 1
X91 (OO) LI - (’}—/—;-m—)’ X92 (OO) = 0, ng (w)
=0, Xpq (0) =0. (3.5

The differential equations for the universal
functions will not be given here, however, they
are very easily obtained from the governing
equations by neglecting certain terms. To obtain
the differential equations for the X;; terms
neglect the terms which have by/m,, 7/l and
1 — ryfm, as coefficients. The equations for
X, are obtained by neglecting all terms with
subscripts between 1 and 5 only. The equations
for Xis are obtained by neglecting terms with
subscripts between 1 and 5 only which do not
have /= as a coefficient, and the equations for
X4 are obtained in a like manner by neglecting
terms with subscripts between 1 and 5 only which
do not have 1 — ry/m, as a coefficient. In each
case the terms which are kept do not keep the
coefficient (i.e. for Xis, w,/x3) since the form
assumed for the universal functions (equation
3.5a) takes care of this. All of the above is
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possible since the equations for the variables
X;—Xyo are linear in the unknown dependent
variables.

Given below are the relations for the tempera-
ture, velocities, etc., in terms of the new Xj
variables. They are obtained by using equations
(2.7, 2.10-2.15) along with equations (3.1) and
(3.3).

fl = TIO (X4 + 772X952 + .. .) (3.6)

o 1 Ty Xg M
pp = ng [A/; — ‘X; (TY; + 1) 82 + . j (3.7)

Uy = wy (Xos + meXos® -+ .. 0) (3.8)

5\ 172
Py = — (é{»mm) j2X1X4 + m |4X, X,
Rw! | -

L2X, X, (X»*’ 1 _3'9)] et b (39
X4 Ty J
71 (0) = @wymyprop ) [ X5 (0)s
+mXs (O +...]  (3.10)
T _
g, (0) = — _(Ilj)(wlRlio)l’z [X5(0)
e omX )2+ ... (G.11)
5 — ()" him fy —x X,
= (i) im x|
Ty 3 I3 .
_ (-2-;% 4;+ﬂ2) Xl] St } (.12)

All of the preceding relations are in terms of
X1, Xo-X1, except where the functions g; and g,
appear which come from the viscosity law. The
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actual law used in integrating the equations was
the square root viscosity law given in equations
(2.35). In terms of the X s they can be expressed
as follows:

1 X,
g =(X)"% &g =5 (7;)172‘-

Figures 2-14 show the results of integrating
the equations for the first and second terms of
the Blasius Series for a variety of wall conditions.
These figures were computed using the ratio of
specific heats y = 14 and Prandtl number

(3.13, 3.14)

o = 07.

Values for the unknown X functions [see
(3.1a—c), (3.3a-c) and (3.5a)] are given at n = 0
and 0-2 in Table 1. These values are helpful for
repeating the integration or interpolating to
obtain initial conditions to solutions having
different values of b, (the ratio of wall to
stagnation point temperature) from those con-
sidered herein.

Figures 2-14 show some of the functions or
their boundary values X in diagrams:
i=1,...9j=1,...4. Figs. 2-6 show the
quantities which determine the coefficients in
the u, component of velocity, and the ¢, tempera-
ture expression of equations (3.8) and (3.6).
Equation (3.5a) must be used for superimposing
the universal functions to get the second terms
in these expressions. We also see that with the use
of Figs. 7-11 we can compute the first-order
shear stress and heat transfer at the wall by
using equations (3.10) and (3.11). Finally with
the help of Figs. 12-14 and equation (3.12) we
can compute the displacement thickness.

4 T ‘ .
i
3
T2 %o z
o NS
| N
To] / \
o6
0 i 1 H O.? i i i i
o) o2 o-4 o2 o8 0 02 o6 +O 4 8
{8} Xa=f;1" {b) X4= n

Fig. 2. Coefficients used in the first terms of equations (3.8) and (3.6).
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Table 1
(a) First-order results—First terms

bO n X Xe X, Xy Xy
02 0-000 0-000000 0-000000 1-093079 0-200000 0-578725
0-200 0-118469 0-363445 0-892209 0-409440 0-566372
06 0-000 0-000000 0-000000 1-206979 0-600000 0-274214
0-200 0-044800 0-278235 1007253 0-668769 0272744
1-0 0-000 0-000000 0-000000 1-311938 1-000000 0-000000
0-200 0-024906 0-242394 1:112107 1-000000 0-000000
1-4 0-000 0-000000 0-000000 1-408494 1-400000 —0-260791
0-200 0-016635 0:222912 1-208600 1-355579 —0-260443
2-0 0-000 0-000000 0-000000 1-540999 2000000 —0:638093
0-200 0-010832 0-206105 1-341060 1-908727 —0-637628

{b) First-order results—Second terms

ba 7 X1 Xn X1 Xn X101
02 0-000 0-000000 0-000000 0-057596 0-000000 —0:129477
0-200 0023115 0-036585 0-058965 —0-063767 —0-253177
06 0-000 0-000000 0-000000 0-077651 0-000000 —0:084935
0-200 0-004859 0-022805 0-077976 —0-035925 --0-196271
1-0 0-000 0-000000 0-000000 0-094523 0-000000 -0-044255
0-200 0-002247 0-019911 0-094697 —0-020607 ~-0-152178
1-4 0-000 0-000000 0-000000 0-109348 0-000000 —0-005545
0-200 0-001438 0-018947 0-109470 —0-010959 --0-113604
20 0-000 0-000000 0-000000 0-128976 0-000000 0-050291
0-200 0-000943 0-018419 0-129062 —0-001298 —0-060616

by 7 Xoo Xoe Xao Xoe Xioe
02 -0 0-000000 0-000000 0-109830 1-000000 —1-208579
0-200 —0-370879 --0-382648 0-165144 0-346686 -0-991755
0-6 0-000 0-000000 0-000000 0-161098 1-000000 - 1012232
0-200 —0-082071 —0-147418 0-167336 0-704916 —0-950033
1-0 0-000 0-000000 0-000000 0-160551 1-000000 -~0-942577
0-200 —0-030297 —0-077936 0-162536 0-813731 — 909857
14 0-000 0-000000 0-000000 0-154131 1-000000 —0-904881
0-200 —0-014842 —0-049086 0-155070 0-862082 —0-883284
20 0-000 0-000000 0-000000 0-143695 1-000000 —0-871687
0-200 —0-006807 —0:029490 0-144126 0-898135 —0-857623
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Table 1—continued

bo m Xas Xzg Xgs Xos Xios
02 0-000 0-000000 0-000000 1-106499 0-000000 0:217023
0-200 0-093869 0-317970 0-733137 0:066260 0-200121
06 0-000 0-000000 0-000000 1-310664 0-000000 0-107443
0-200 0-044840 0-277228 0-920371 0-026119 0-104979
1-0 0-000 0-000000 0-000000 1-481382 0-000000 0-000000
0-200 0:026971 0-256529 1-086410 0-000000 0-000000
1-4 0-000 0-000000 0-000000 1-631847 0-000000 —0-107328
0-200 0-018762 0-244745 1235033 —0-018408 —0-106677
20 0-000 0-000000 0-000000 1-832201 0-000000 —0-268678
0-200 0-012659 0-234477 1-434165 —0-038862 —0-267779 .
b n D, Xoa Xss KXoy Xios
0-2 0-000 0-000000 0-000000 —0-207889 0-000000 —0-173619 ‘
0-200 -—0:126200 —0-058327 —0-184777 —0-053207 —0-162112
0-6 0-000 0-000000 0-000000 —0-158451 0-000000 —0-078575
0-200 —0-049893 —0-037315 —0-151607 —0:019127 —0077154
1-0 0-000 0-000000 0-000000 —0-126834 0-000000 0-000000
0-200 —0-027435 —0-025187 —0-123384 0-000000 0-000000
1-4 0-000 0-000000 0-000000 —0-103018 0-000000 0:070612
0-200 —0-018031 —0-017936 —0-100830 0-012116 0-070299
20 0-000 0-000000 0-000000 —0-075244 0-000000 0:167910
0-200 —0-011496 —0-011343 -—0-073881 0-024293 0-167511
(c) Second-order results
bo n X Xi» Xis X1 Xis
02 0-000 0-000000 0-000000 —0-877865 0-000000 —0-212018
0-200 —0-081106 —0-300163 —-0-799847 —-0-065140 —0-199781
06 0-000 0-000000 0-000000 —1-303454 0-000000 —0-131161
0-200 —0-047687 —0-308108 —1-152270 —0-031935 —0-128920
1-0 0-000 0-000000 0-000000 —1-768602 0-000000 0-000000
0-200 —0-033856 —0-330981 —1-541463 0-000000 0-000000
1-4 0-000 0-000000 0-000000 —2-260686 0-000000 0-173065
0-200 —0-027022 —0-359451 -—1-958985 0-029695 0-172268
20 0-000 0-000000 0-000000 -—3-035639 0-000000 0-501336
0-200 —0-021578 —0-405141 -2-629140 0-072528 0-500042
When b,, m,, r;, etc., are knowninaspecificcase  follows:
and high accuracy in the temperature, velocity, , ,
etc., in the boundary layer are required, we can Xn=/fy Xp=rmf; + nf| (3.15a, b)
compute the exact mmal conditions X;, X, X, Xy =X, Xya=m (3.15¢, d)
and X, with equation (3.5a) and the use of the
initial conditions on the universal functions. X, — g7, + dgl J (3.15¢)
We then use the governing equations to integrate 15 = 81T dr, 270" ‘
directly to find the required quantities. In doin . .
Y 4 q & Equations (2.27a, b) yield five first-order

this we are, however, limited to the specific cases
of wall conditions computed as examples.

Second-order boundary-layer quantities (see
section 2, IIT). For the second-order effect of
vorticity we define Xj; through X;; as

differential equations for the variables X;, to
X15. These equations will not be given here
since they can be obtained by direct substitution.
The corresponding boundary conditions are
[see (2.27¢, d, €)]:
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Atn =0
X33(0) = X35(0) = X;,(0) = 0. (3.16a)
Atnp = c©

Xig(o0) = — 1t

X,(0) = 0. } (3.16b)

t The condition at infinity on X, given by equation
(3.16g) can be explained as follows.
Using equations (3.15¢) and (3.15b) we get

Xig = &i(nfs + Y.

R. T. DAVIS and 1. FLUGGE-LOTZ

The relations for the second-order temperature,
velocities, etc,, in terms of the X; variables are:

T2 , R 172
n— b 5,0 (—wl!f) Kt ] GID

1

Ry Ty, S;(0) (R V2 X
py = — a0l10 1()( 104“10) ( 14)+”.

Wy wy X2
(3.18)
, R 1/2
uy = Ty S; (0) ( ’;‘: “’) [Xps +...]  (3.19)
Tiott10 S, (0
w= 2200 A0 x4 XX+
(3.20)
7o0) = 10 Ryo T;o SI(O) [X::0s + .. (3.21)
1 R .
00 = —, ZyTH S0 X0 + - ]
(3.22)

In integrating the equations for X;;~X;; the
relations for g; and g, for the square root
viscosity law were used as previously given.

Knowing the asymptotic nature of the above functions
as 7y goes to infinity we obtain 7,f’y ~{—%) from (2.16d)
and (2.27d), 7f’y ~0 from (2.27d) and (2.16d), and
&1 ~ | from (2.34a) and (2.16d). Substituting this into
the expression for Xy, we get Xjp ~ W{(—n) or Xj3 ~ — 1
as n — 00,

I )4

/

&
<]

o6 -
04
0‘2 -

s

4

/]

4

yd -

dba oia

-0-16 ~-0r12 -008 -0-04 O 0-04
(b) X, (0)

Fics. 8-11. Coefficients used in the second terms of equations (3.10) and (3.11) with equation (3.5a).
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In addition the following is the proper definition
for dg,/dr, as given by equation (2.35b).

dg;y 1 1
dr, 2 (X)W
As in the first-order case, results for the
second-order terms are given in diagrams; see
Figs. 15 and 16. Fig. 15(a) shows a plot of X;3vs.n
which when used with equation (3.19) determines
the second-order contribution to the velocity
profile parallel to the wall. Similarly Fig. 15(b)
shows a plot of X;, which when used with
equation (3.17) determines the second-order con-

(3.23)

tribution to the temperature profile. Figs. 16(a)
and 16(b) along with equations (3.21) and (3.22)
determine the second-order contributions to
shear stress and heat transfer at the wall. A
square root viscosity law was used for computing
most of the points given on these figures,
however, two points are included for the linear
viscosity law so that the influence of a different
viscosity law can be seen. As in the first-order
case values for the unknown X functions (3.15a—
¢) are given at = 0 and 0-2 in Table 1.
Finally by using equations (1.3), (1.26), (1.27)
and (1.31) we can find the total flow quantities
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in the boundary layer including first- and second-
order effects.

4. COMPARISON WITH OTHER THEORIES AND
EXPERIMENTS

There have been several methods developed
for treating the problem of viscous compressible
flow over blunt axisymmetric bodies in the
Reynolds-number range where Reynolds num-
bers are too small for.the conventional first-
order boundary-layer equations to give reason-
able results. These methods fall into essentially
two categories. In the first category the idea of a
boundary-layer with an external inviscid flow
region is used. In the second category the entire

flow field is treated at once including the neces-
sary viscous effects. There are several methods
which fall under the first category. One of these
is to approach the problem as a singular pertur-
bation problem and to use the method of inner
and outer expansions to find the first- and second-
order boundary-layer equations. Examples of
this method are the methods of Van Dyke [1],
which is followed in this paper, Lenard [19], and
Maslen [3, 18]. Another method which falls in
the first category is the method where the
conventional boundary-layer equations are
modified to take care of vorticity or other higher
order effects. In this method the idea of the
boundary-layer accompanied by an outer inviscid
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region is retained, but the conventional first-
order boundary-layer equations are modified to
take care of the higher order effects. An example
of this method is the method of Ferri, Zakkay
and Ting [5]. The second category consists of
retaining the essential terms in the Navier-Stokes
equations to obtain a viscous flow model which
reflects the essential effects which are under
study. One example of this is the method of
Cheng [4] or Cheng and Chang [17] where the
thin shock layer approximation is applied to the
Navier-Stokes equations to describe the flow
around a blunt axisymmetric body, and solutions
in the stagnation region are obtained. Another of
this type of solution is that of Ho and Probstein
[13].

In order to verify any theory experiments are
necessary, and unfortunately the experiments in
verifying the various second-order theories are
quite difficult and definite answers have not as
yet been obtained. The experiments carried out
thus far, like the theory, do not show the agree-
ment that one would hope for. One group of
experiments, carried out by Ferri, Zakkay and
Ting [5] in the hypersonic wind tunnel at the
Polytechnic Institute of Brooklyn agree very
well with their own theory. Another set of experi-
ments carried out in the low density wind tunnel
at the University of California by Hickman [14],
on the other hand, agree well with Van Dyke’s
theory but cannot be used to rule out the results
of the authors who neglected the second-order
pressure gradient in the vorticity term (i.e.

Maslen, and Hayes and Probstein). The scatter
in Hickman’s data is sufficient so that the cases
of second-order pressure gradient included and
also no second-order pressure gradient fall with-
in the scatter. If Hickman’s experiments are
correct, they do, however, tend to rule out the
theory of Ferri, Zakkay and Ting since most of
the experimental data of Hickman falls below
Ferri, Zakkay and Ting’s theory and experi-
ments. A third set of experiments are the shock
tube experiments run at the Cornell Aero-
nautical Lab. by Wilson and Wittliff [15]. They
tend to show an increase in heat transfer over the
first-order boundary-layer as all of the other
experiments have shown but there is enough
spread in their data so that it cannot be used to
rule out any of the theories discussed herein.
All of the theories discussed herein show an
increase in heat transfer due to the effect of
external vorticity and fall within Wilson and
Wittliff’s data. All of this indicates that while
experiments have been run, no definite con-
clusions can be drawn as yet as to the most
correct ones. A great deal of experimental work
must still be done before any of the theories
developed thus far can be justified on an ex-
perimental basis. Another point which has often
been overlooked is that there are other second-
order effects besides the effects of external
vorticity. The second-order effects have not been
separated out in the experiments so the measured
experimental results always include all of these
effects. Van Dyke [16] has shown that when ali
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of the effects are included, the agreement be-
tween him and Hickman’s least squares fit to
experimental data is not nearly as good as the
agreement when only the vorticity term is
included. These other second-order terms have
not been included by Ferri et al. in their theo-
retical analysis, so it is questionable as to
whether their experimental data should agree
with their theory if you assume that their theory
is correct.

In order to compare the results obtained here-
in with other theories and experiments we intro-
duce in the following sections the notations of
the other authors referred to previously.

I. The vorticity interaction parameter

Hayes and Probstein [2] p. 370 define a
vorticity interaction parameter, which is defined
as the ratio of the vorticity at the outer edge of
the boundary-layer to an average vorticity across
the boundary-layer. Taking their definition and
using the variables introduced herein we find
that in the stagnation-point region, i.e. in
keeping only the first term in the Blasius Series
in both the first- and second-order theories,

I Ty S; (0) [Ryg Tyo®\V2 (1 \ -0/
B \/(2) Wy wy bo €

'QP
@.1)

where £2; is the vorticity interaction parameter,
w is the power in the viscosity law paT?, and all
other symbols are as previously defined. Notice
that according to this definition of the vorticity
interaction parameter 2, > oo as b, 0 for
w << 1. For our case w = 1/2, therefore, the
interaction parameter becomes infinite as the
ratio of wall to stagnation-point temperature
goes to zero. This is due to an improper definition
of a suitable boundary-layer thickness by Hayes
and Probstein, since by using their definition the
“suitable’ thickness of the boundary-layer goes
to o as b, —0. This difficulty does not arise
when o = 1 since the term containing b, drops
out and £, remains bounded as b, — 0. There-
fore, for a highly cooled body (b, — 0) this
definition makes sense only for the linear vis-
cosity law. This difficulty arises because of the
reference values of p* and u* appearing in the
transformations given by equations (8.29) of

365

Hayes and Probstein [2]. Instead of using pf,
and p ., in the transformations, values could be
used which do not cause trouble as the ratio of
wall to stagnation-point temperature, goes to
zero. One possible choice would be to use
reference values such as Cheng [4] used. He
employs a reference temperature in the stagna-
tion-region of (£, + fioa)/2- When this
value is used in the reference viscosity and
density instead of £, then no trouble arises as
bo goes to zero and £, the new vorticity inter-
action parameter, behaves properly.

For the sake of comparison with other results
the stagnation-point heat transfer and skin
friction can be written as follows using the
vorticity interaction parameter. Using the first
term of equations (2.13) and (2.14) and equations
(2.25) and (2.26) and dividing through by the
first-order term we have:

Fal— () boa—wm’;%: o @
gal — /(2) bot—v2 ZEO) 4.3

or from equations (3.10) and (3.11), and (3.21)
and (3.22)

1w Xl3 0

ol = V@ bten P00, (44
1—w/2 15( )

dol— V@ bown P00, (45

Figures 17 and 18 show the results of plotting
—X13(0)/X3(0) and —X15(0)/X(0) versus b,.
These are the important quantities in the shear
stress and heat-transfer expressions of equations
(4.4) and (4.5). The reference to points of other
authors is given in a form similar to that of
Probstein in a poll of the various authors who
have computed the second-order effect of
vorticity. These points have been checked against
data published since the time of the poll and
the results are listed in Table 2 with some
additions to include authors not included in
Probstein’s original poll. Several points given
by Probstein have not been included; however,
they also fall near the curve given for no second-
order pressure gradient [see equation (2.27f)).
The numerical results of Hayes and Probstein
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Table 2. Comparison with other authors

{a) Second-order pressure gradient not included

Author a by be o @ Reference
Probstein 0-44 1-28 —0 1-0 1 Unpublished
and Kemp
Cheng and 0-495 1-34 -0 071 1 17
Chang 044 0-88 040 071 1 17
Maslen 0-45 12 -0 10 1 18
Lenard 0-403 0-700 1-00 076 0-58 19
0-425 0-783 075 | |
0451 0-893 0-50 |
0484 1-044 025 |
0-508 1169 0-10 i
(b) Second-order pressure gradient included
Author a, by b ¢ @ Reference
Van Dyke 0-482 1-062 0-20 070 1 1
Results 1-1111 2-7858 200 0-70 0-50
obtained 0-9385 2:2698 1-40 ! |
herein 0-8150 1-9064 1-00 ]
06764 1-5272 0-60 |
05181 11357 020 1) |
[2]p. 372, have not been included since, as Cheng  II. The Reynolds number defined by Ferri,

and Chang [17] point out, no comparison can

be made since some of the conditions under

which the computations were made have not

been included in Hayes and Probstein’s book.
If we let

gal 4+ ab,0-02Q, (4.5b)
Fal 4 bbott—o® 0Q, (4.4b)
where
3 X5 (0)
al = ‘\/(2) ”X,:’( 0’) (4.50}
_ X3 (0)
b= —14/(2) X, (0) (4.4c)

then we can compute the quantities given in

Table 2.t

t Added in proof: It should be pointed out here that
the values given for Lenard [19] in Table 2 and Figures
17 and 18 have been corrected in an addendum to his
original work and bring complete agreement with the
results obtained herein.

Zakkay and Ting
In order to compare the results obtained herein
with those of Ferri, Zakkay and Ting [5] we
must introduce their Reynolds number which is
defined as

“aty ()
Ry = P x(
/‘L()

where p; = stagnation point density, 4}, = free
stream stagnation enthalpy, p) = viscosity for
stagnation conditions.

Using the definitions for ¢ and Ry and also

using some thermodynamic relations we can
show that

(,y — l)MZ% (20-171) ) i

) . v (Ryo) (Rp)

v —1in VI(Ry
2 a

(4.6a)

1+
(4.6b)

Figure 19 shows a comparison of results
obtained herein with those of Ferri, Zakkay and
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Ting [5], Fig. 9. The values used in plotting the
lower curve of the figure were obtained from
Fig. 18 for b, = (-4. We see that the results
obtained herein do not agree well with Ferri,
Zakkay and Ting.

HI. The Reynolds number of Hickman
Hickman [14] has defined a Reynolds number
as follows:

(4.7a)
where U3, pf, and p are the velocity, density
and viscosity respectively behind the shock, and
D* is the body nose diameter.

Using this definition of Res, the definition of
¢, and some thermodynamic relations we find
that

e =)
(y — D+ DM, _ ]"”2
—(r — DIty — DM + 2]

(4.7b)

[[2VM 3

V(Res)
If this relation is used along with (4.6) then
we can plot Hickman’s least squares fit to his
experimental data on Fig. 19 for comparison
with other theories and experiments. We see
that the results of Hickman agree well with the
results obtained herein while Ferri et al.’s results
do not. We should remember, however, that for a
proper comparison we should include all of the
second-order effects in the analysis since Hick-
man’s experiments inchude them.

40 60
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Rex107

FiG. 19. Comparison of results contained herein with
Ferri, Zakkay and Ting (5], and Hickman [14]).
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Résumé—On a examiné ['influence d’'un écoulement rotationnel extérieur sur une couche limite
laminaire compressible dans la région du point d’arrét d’un corps arrondi de révolution. Dans le cas
considéré le tourbillon est engendré par une onde de choc courbe formée devant le corps qui se déplace
4 une vitesse supersonique. La méthode de solution utilisée est due aJVan Dyke et consiste 4 résoudre
les équations de la couche limite du ler ordre (ou de Prandtl) et ensuite & résoudre des équations du
second ordre pour I’effet du tourbillon en retenant les termes du second ordre par rapport & un
paramétre de perturbation relié & inverse de la racine carrée d’un nombre de Reynolds.

La premiére étape de la solution a la fois des équations du ler ordre et du second ordre pour
Pinteraction turbulente est la réduction des équations aux dérivées partielles a des équations différen-
tielles au moyen d’un développement en série de Blasius. On a intégré alors numériquement les
équations différenticlles obtenues. On a présenté les résultats de I’intégration des équations pour les
deux premiers termes de la série correspondant aux équations du ler ordre et pour un terme de la série
correspondant aux équations du 2¢me ordre. Ces résultats ont été obtenus pour une gamme de rapports
de température de paroi a la température du point d’arrét. Les résultats obtenus a partir de 'intégra-
tion de ces équations sont comparés avec les théories et les expériences d’autres auteurs. On a trouvé
une bonne concordance avec les théories de certains auteurs lorsqu’on a supposé nul un gradient de
pression di a I'interaction tourbillonnaire. On a trouvé cependant que cette simplification n’est pas
permise en général. On a trouvé aussi une concordance avec un groupe de résultats expérimentaux,
mais cette comparaison n’a pas beaucoup de sens puisque I’analyse actuelle ne comprend seulement
que ’effet du tourbillon et non d’autres effets de second ordre qui peuvent également &tre importants.
Cependant puisque les équations du second ordre sont linéaires les autres effets du second ordre peuvent
étre calculés séparément et superposés a 'effet tourbillonnaire afin d’obtenir une théorie compléte de

second ordre.

Zusammenfassung—Der Einfluss dusserer Verwirbelung auf die laminare, kompressible Grenzschicht

wird im Staupunktbereich eines achssymmetrischen, stumpfen Korpers untersucht. Im betrachteten

Fall wird die Verwirbelung von einer gekriimmten Stosswelle erzeugt, die von dem mit U berschall

bewegten Korper hervorgerufen wird. Die Losungsmethode stammt von Van Dyke und beruht darauf,

erst Grenzschichtgleichungen erster Ordnung (nach Prandtl) und dann fiir den Wirbeleffekt Gleichun-

gen zweiter Ordnung eines Storparameters zu verstehen, der auf die reziproke Quadratwurzel einer
Reynoldszahl bezogen wird.

Der erste Schritt in der Losung, sowohl der Gleichungen erster als auch zweiter Ordnung, fir die
Wirbelwechselwirkung, besteht darin, die partiellen Differentialgleichungen nach einer Blasius-
Reihenentwicklung auf gewohnliche Differentialgleichungen zu reduzieren. Die resultierenden
gewohnlichen Differentialgleichungen werden numerisch integriert. Integrationsergebnisse sind
angegeben fiir die Gleichung erster Ordnung fiir die ersten beiden Glieder der Reihe und fiir ein Glied
der Reihe der Gleichungen zweiter Ordnung. Diese Ergebnisse liessen sich fiir eineVielzahl von Uerhilt-
nissen der Wandtemperatur zue Staupunkttemperatur erhalten. Die aus die Integration der Gleichungen
erzielten Ergebnisse werden mit der Theorie und den Versuchen anderer Autoren verglichen. Gute
Ubereinstimmung mit anderen Autoren ergibt sich, wenn der auf der Wirbelwechselwirkung beru-
hende Druckgradient gleich Null gesetzt wird. Allgemein ist diese Vereinfachung—wie sich ergab—
jedoch nicht statthaft. Fiir eine bestimmte Versuchsreihe zeigte sich ebenfalls Ubereinstimmung, doch
ist ein Vergleich nicht charakteristisch, da die gegenwirtige Analyse nur den Einfluss der Verwirbelung
einschliesst und keine anderen Effekte zweiter Ordnung, die gleich wichtig sein kénnen. Da jedoch die
Gleichungen zweiter Ordnung linear sind, lassen sich diese anderen Effekte zweiter Ordnung getrennt
berechnen und dem Wirbeleffekt tiberlagern, womit eine vollstindige Theorie zweiter Ordnung zu

erhalten ist.
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Ansoranna—M3yuaiocs BIMAHMe BHeHIHell 3aBUXPEHHOCTH B OOJACTU KPHTHYECKON TOUKLI
0CeCHMMETDPHYHOIO TYIOTO Tejla HA JaMHHAPHEIT NOrDAHUYHBI CI0H CHIMAEMOl ITKOCTH.
PaccMaTtpuBaercs clyvaif, KOTJa 3aBUXPEHHOCTH CO3AAETCA KPUBOJWHEHHBLIM T'OJIOBHEIM
CKAYKOM YIUIOTHEHUS, 00pasyeMbM HTHM TejoM, INepeMelaloliuMcA CO CBePX3BYKOBOI
cropocThio. Micmoabayembiii MeTo; pellieHHA MpuHagIe:xuT Ban oKy 1 cocTOHT B pemeHun
VpaBHEHMIT IIOIPAHKHYHOI0 (JI0H epBOro opAdkd (uiau IIpasiTIs) U 3aTeM pelieHu ypaBHe-
Hilif BTOPOTo MOPAAKa MIA sPderTa 3aBUXPEeHHOCTH, Ile M0l BTOPHIM HOPAXKOM IOJpasyMe-
RB&aeTcA BTOPOIl IIOPAJOK B NapaMeTpe BO3MYLIEHHH, CBA3AHHOM ¢ OOPATHBIM KBAJPATHBIM
KOPHeM M3 uncia Peltnoabca.

IlepBHIM 11ATOM B pelleHUN KaK YPaBHeHUI ITepBOTO NMOPHAKa, Tak U yPaBHEHMIt BTOPOro
1O PATKA I B3aUMO/ENCTBUH 3aBUXPEeHHOCTeil ABIAETCA cBefenue MupPepeHHNaILHBIX
VPABHEHMIT B YACTHBIX HPOMBBOIHBIX K OOBIKHOBEHHBIM ju@depeHnuaIbHRM ypaBHe-
HUAM  UYTesm pasilomenuss B pAx  Biaasmyca. 3areM  noayuyeHuble OOBIKHORBEHHBIE
JuddepeninaIbible YpaBHeHUs WHTerpupylorTcs unciaenHo. llpuBegensl pesyibTaTel HRTET-
PUPOBAHHA VPaBHEeHNIH 1715 NePBHX ABYX YJICHOB pAja B cIyyae YPaBHEHHIA IEPBOTO NOPALKA
I I8 OAHOrO YJeHa PAJA A YpaBHeHHIT BTOPOro MOpAAKA. 9TH JaHHBE MOJydYeHHl IIA
11e5I01'0 Psigd OTHOLIEHHNIT TeMIepaTryphl HA CTEHKe N TeMIepaType KPUTHYECKON TOYKM Yy
BepiuMHLL. [[aHHble, TOJVUYeHHBIE NIYTEM MHTEIrDUPOBAHUA BTUX ypaBHeHuI, cpABHMBAIOTCH
¢ TEOPeTHYCCKMMH M DKCIEPUMEHTATLHLMM JAHHBIMU Apyrux asropos. Haitmeno xopoimee
CCOTBETCTBHE C TEOPETHUECKMMM {AHHBIMH HEKUTODHIX JPYIMX 8BTOPOB B CJIyYae, KOTAa
'] AMMEUT ;IaBIEeHHH, BOBHUKAIOLICrO B pPeayibTaTe B3anMOIeiicTBUA BuXpeH, nojaraercs
PABHBIM HYI0. OAHAKO VCTAHOBIAEHO, 4TO BOOOHIE TAKOe YIIPOLRHUE He JOTycTuMO. Yera-
HOBIIEHO TAKMe COOTBETCTBHE ¢ HEROTOPOH COBOKYIIHOCTBIO BKCILEPUMEHTAIbHBIX TAHHBIX,
HO ATO CpaBHEHHe He nMeer GOJIBIIONO 3HAYEHWSI, T.K. IpUBeJeHHBH AHaIN3 BKIWOYAeT
TCALKO 9QQPEKT 3aBMXPEHHOCTH 11 He BKIOYAeT KaKHe-nudo gpyrue s¢dexTsl BTOpOro 10-
PAIRA, KOTOPBIE MOTYT OBITH CTOJIb 7Ke BAMKHBL. (IHAKO, MOCKOJBKY YPABHEHHS BTOPOTO
TUPASKA ABIFIOTCS JMHEAHBIMU, ApYyrue 9@@erThl BTOPOTO 1OPAAKA MOMKHO PACCUUTATL
OTIENBHO 1 CPABHUTDL ¢ HOGERTOM 3aBUXPEHHOCTN [LIIA HOJYUeHH A NOANBIX TAIHBIX B TeOpun,

vunraaoiieit AapHeRTH RTOPOTO MOPAIKA.



