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THE LAMINAR COMPRESSIBLE BOUNDARY-LAYER IN THE 
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VORTICITY INTERACTIONS 
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Abstract-The influence of external vorticity on the laminar compressible boundary layer is examined 
in the stagnation-point region of an axisymmetric blunt body. The case considered is one where the 
vortidty is generated by a curved bow-shock wave formed by the body moving at a supersonic speed. 
The method of solution used is due to Van Dyke and consists of solving first-order (or Prandtl) 
boundary-layer equations and then solving second-order equations for the vorticity elfect, where by 
second-order we mean second-order in a perturbation parameter related to the inverse square root ofa 
Reynolds number. 

The first step in the solution of both the first-order equations and the second-order equations for 
vorticity interaction is reduction of the partial differential equations to ordinary differential equations 
by a Blasius Series expansion. The resulting ordinary differential equations are then integrated numeri- 
cally. Results are presented for integration of the equations for the first two terms of the series for the 
first-order equations and for one term of the series for the second-order equations. These results are 
obtained for a variety of wall to stagnation-point temperature ratios at the vertex. The results obtained 
from Integrating these equations are compared with the theories and experiments of other authors. 
Good agreement is found with the theories of some other authors when a pressure gradient which is 
due to vorticity interaction is set equal to zero. Tt is found, however, that in general this simplification 
is not permissible. Agreement is also found with one set of experimental results, but this comparison is 
not very significant since the present analysis includes only the vorticity effect and not other second- 
order effects which may be equally important. However, since the second-order equations are linear 
the other second-order effects may be computed separately and superposed with the vorticity effect to 

obtain a complete second-order theory. 
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NOMENCLATURE 

nose radius; 

constant defined by equa- 
tion (4Sc) ; 
constants defined by equa- 
tion (2.3); 
constant defined by equa- 
t ion (4.4~) ; 
Sutherland constant de- 
fined by equation (I. lp); 
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specific heat at constant 
pressure; 
functions defined by equa- 
tion (2.5); 
function defined by equa- 
tion (2.20) ; 
functions defined in gener- 
al by equation (2.8) and 
for Sutherland’s viscosity 
law by equations (2.34b, 
c); 
enthalpy ; 
stagnation enthalpy ; 
constant which equals 0 
for plane flow and 1 for 
axisymmetric flow; 
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IWm, 
n, 

N, 

PT 
p,, 1?L: Pl, I323 

free stream Mach number; 
co-ordinate normal to the 
body ; 
stretched co-ordinate nor- 
mal to the body defined 
by equation (1.4); 
pressure ; 
first- and second-order 
pressures in the outer and 
inner expansions, see 
equations ( 1.2~) and (1.3~) ; 
heat transfer ; 
first- and second-order heat 
transfer defined by equa- 
tion (1.26); 
body radius; 
coefficient defined by equa- 
tion (2.4); 
first- and second-order 
density in the outer ex- 
pansion, equation (1.2d); 
free stream Reynolds num- 
ber defined by equation 
(I.lq); 
shock Reynolds number 
defined by equation (4.7a) ; 
stagnation Reynolds num- 
ber defined by equation 
(4.6a) ; 
co-ordinate along the 
body; 
entropy ; 
first-order entropy in the 
outer expansion; 
absolute temperature; 
first- and second-order 
temperatures in the outer 
and inner expansions, 
(1.2e) and (1.3e); 
velocity component in the 
s direction; 
free stream velocity; 
first- and second-order 
velocity components in the 
s direction in the outer 
and inner expansions, see 
equations (1.2a) and 
(1.3a); 
velocity component in the 
n direction ; 

v,, P-2; 111, l$, first- and second-order 
velocity components in the 
n direction in the outer and 
inner expansions, see equa- 
tions (1.2b) and (1.3b); 

l\‘l, 11’3, constants defined by equa- 
tions (2.2b) and (2.2~); 

X6, i == 1, 2-5, functions defined by equa- 
tions (3.1 a-e); 

Xa, i = 6, 7-10, functions defined by equa- 
tions (3.3 a-e); 

Xg, i = 1 I, 12-I 5, functions defined by equa- 
tions (3.15 a-f); _ 
functions defined by equa- 
tions (3.5 a-f). 

ratio of body to shock nose 
radius ; 
a quantity defined by equa- 
tion (2.27e); 
ratio of specific heats 
C,jC, ; 
displacement thickness de- 
fined by equation (1.3 1) ; 
perturbation parameter de- 
fined by equation (1.1 r) ; 
a co-ordinate normal to 
the body defined by equa- 
tion (2.9) ; 
viscosity coe%cient ; 
constants defined by equa- 
tion (2. I): 
density ; 
first- and second-order 
densities in the inner ex- 
pansion, see equation 
(1.3d); 
Prandtl number: 
equation ( 1.29) ; 
shear stress defined by 
equation (1.29); 
first- and second-order 
shear stress defined by 
equation (1.27); 
functions defined by equa- 
tion (2.7); 
function defined by equa- 
tion (2.21); 
stream function: 
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first- and second-order 
stream functions in the 
outer and inner expan- 
sions, see equations (1.2f) 
and (1.3f); 
exponent in the viscosity 
law where paTw : 
vorticity interaction para- 
meter defined by equation 
(4.1). 

Subscripts 
b, 

0, 

*, 

Superscripts 
* , ‘ 
, 

condition at the body 
surface; 
stagnation point con- 
dition ; 
free stream condition. 

dimensional quantity; 
differentiation with respect 
to the given argument. 

INTRODUCTION 
THE effect of external vorticity on the laminar 
boundary-layer in the stagnation-point region 
of an axisymmetric blunt body has been investi- 
gated by several authors. One of the more recent 
methods of investigation was that of Van 
Dyke [I J where the method of inner and outer 
expansions was used with a perturbation para- 
meter related to the inverse square root of a 
Reynolds number for deriving the first- and 
second-order equations for the boundary-layer 
flow on blunt bodies. Van Dyke then used first 
terms of Blasius Series expansions in the co- 
ordinate along the body to find solutions to the 
first- and second-order equations in the stagna- 
tion-point region. In this present study Van 
Dyke’s method is adopted and extended by 
using a viscosity law which varies as the square 
root of the temperature rather than Iinearly; in 
addition a variety of wall-temperature to 
stagnation-point temperature ratios are con- 
sidered. Also included in this paper are solutions 
for the second term of the Blasius Series for the 
first-order boundary-layer equations. The use 
of the first two terms of the Blasius Series pre- 
sented herein will give reasonably good results 
for boundary-layer computations for a region 

extending back to the sonic line on blunt bodies 
at supersonic speeds. 

It will be shown that when the term involving 
the second-order pressure gradient along the 
body is set equal to zero, the results of integrat- 
ing Van Dyke’s second-order equation for the 
vorticity effect will agree with Probstein [2]. 
Maslen [3], Lenard [19] and Cheng [4], but will 
not agree with Ferri, Zakkay and Ting [S]. 
However it will be shown that only at tempera- 
ture ratios in the neighborhood of wall-tempera- 
ture to stagnation-point temperature of O-2 will 
the assumption of neglecting this pressure 
gradient be justifiable. Since for some time the 
only solution, which included the effect of the 
pressure gradient, was Van Dyke’s for a tempera- 
ture ratio of 0.2, wrong conclusions were drawn 
about the pressure gradient’s effect. This 
happened because the displacement thickness for 
this particular tem~rature ratio is so small that 
its effect is negligible and therefore the second- 
order pressure gradient also becomes neghgible. 

Since the second-order equations are linear the 
pressure gradient due to vorticity interaction can 
be added to one of the other second-order 
terms such as the term due to displacement 
thickness. In most cases, however, where a 
complete second-order theory has been com- 
puted this has not been done and the term has 
been completeiy neglected. For a complete 
discussion of this and various ways to divide 
the second-order effects, see Van Dyke [20]. 

1. FORMULATION OF THE PROBLEM 
Van Dyke [I] derived the first- and second- 

order boundary-layer equations for a plane or 
axisymmetrical blunt body at zero angle of 
attack. In deriving the equations he started from 
the full compressible Navier-Strokes and energy 
equations, and he used the systematic method of 
inner and outer expansions due to Lagerstrom, 
Kaplun and Cole. He has found that there are 
seven second-order effects, two of which are the 
effects of entropy and enthalpy gradients, or 
when taken together, the vorticity effect. We 
shall concern ourselves here only with the second- 
order effect of vorticity. 

1. Co-ordinate system 
A body of revolution lies in a flow field, with 

constant velocity V: (parallel to the body axis} 
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ai infinity. The density p”, and temperature 
TL are given. The specific heat Cf and Prandtl 
number o are assumed to be constant, and the 
gas is assumed to be perfect. The co-ordinates 
of a point in the flow field and the velocity 
components are described by Fig. 1. 

FK. 1. Co-ordinate system. 

II. Dimensionless quantilies 
Tn the following the unstarred quantities are 

the dimensionless and the starred quantities 
dimensional. The non~dimensional variables 
and constants remain bounded in the stagnation 
region as Mw goes to infinity. Co-ordinates and 
velocity ~om~nents are explained in Fig. 1. 

The quantity j =: 0 for plane flow and 1 for 
axisymmetri~ Bow. 

co-ordinate along {I.la) 
body surface ; 

co-ordinate normal ( 1.1 b) 
to body surface; 

nose radius : (l,k) 

velocity component ( I. 1 d) 
parallel to body 
surface ; 

velocity component (1.1 e) 
normal to body 
surface ; 

pressure; (I.lf) 

density; (I.[& 

absolute temperature ; ( I. 1 h) 

heat transfer : 

$dc = “* 
a”” 

displacement thick- 
ness? ; 

C” 
“...--._---. . c = PiI1 -/- l&y -‘I. i}~~~ 

Sutherland constant ; 

(1.11) 

(l.lm) 

(1.133 

(1.10) 

(l.lpf 

(1.M) 

perturbatjon para~neter, ( 1.1 r) 

Hereafter ,all unstarred quantities will be 
considered to be non-dimens~onalized. 

XII. ~~~~r~~r~~~ scheme 
Van Dyke [i] took the following expansion 

scheme with the perturbation parameter 
c = [EL*(LI~~C~JPY~,U~~*~“~. This scheme 
seems reasonable as long as the body is analytic. 
We could have first left the dependence on F 
unspecified in the expansion, and upon substi- 
tution into the firll Navier-Stokes and energy 
equations we would have found that when we 
consider the boundary conditions the only 

..l~~__” ‘... “_... _ 
t The displacement thickness is usually divided by a 

Reynolds number in non-dimensiooalizing it, which is not 
done here. 
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meaningful expansion scheme is the one given In all of the work contained in this report the 
below. definition of E used will be that of equation (1.8) 

Outer expansion 
and w will be taken to be l/2. 

u(s,n;~)~U~(~,n)+ l &(s,n)+ . ..t.(1.2a) 
The expansion schemes used herein seem 

reasonable since the boundary-layer thickness at 
u(s, n; E) - I’r(~,n) + B Vz(s,n) + . . . (1.2b) high Mach numbers can be shown to be O(E) 

p (8, II ; E) - P, (s, n) + E Pz (s, n) + , , . (1.2c) whereas the thickness of the bow shock wave is 

~(s,n;~)~R&,fr+ E&(s,I~)+ . . . (1.2d) 
0( l “) and the shock-layer thickness itself is 0( 1). 

Implicitly contained in the above is the 
T(~,~;E)NT~(s,~)+ET~(s,~)+ . . . (1.2e) assumption that the viscosity varies as the 

4L 0, n ; e) - $1 (f, n) + c $2 (s, n) + . . I . (1.2f) absolute temperature to some power w, for 

Inner expansion 
example when w is taken to be 1 this would be 
the linear-viscosity law. This assumption is not 

g(s, n; c) -r+(.s,N)+ l u,(s,N)-/- . . . (1.3a) necessary, and a more exact viscosity law such as 

rj(s, n; 6) N EC~(S, N)+ E~u~(~,N)+ . . . (1.3bf Sutherland’s could be used. Later a Biasius 

P@, n; c) -Pl(S, A9 + EPz(S, N) + 1 t. (1.3c) 
Series will be used for solutions near the stagna- 

P ($9 n; e) - PI 0, N) + e pz (s, N) -t- . . . (1.W 
tion point. By using the power-viscosity law, 
Blasius Series solutions in the boundary layer 

T (8, n ; 6) - II (s, N) + E t2 (3, N) + . . . (1.3e) can be obtained by knowing only the ratio of 

4(&n; ~)-~$,(S,N)+ E21/12(S,N)$- . . . . the temperatures across the boundary layer. 

(1.3f) When Sutherland’s law is used, however, 

In the above expressions the normal co-ordinates 
solutions depend not only on the temperature 
ratio across the boundary layer but on the free- 

are related by stream conditions. This means that if the Suther- 

pJ2 (1.4) 
land viscosity law is employed we cannot tabulate 

E’ solutions for different walI-temperature to stag- 

It is also necessary to expand the viscosity in a nation-point temperature ratios, but must 

Taylor series expansion about f, as follows: integrate the differential equations resulting 
from the use of the Blasius Series every time the 

P (T) = P (G + ECL’ (G) f, + * * * (1.5) free-stream conditions are changed. 
with 

IV. Boundary conditions 

(1.6) The proper boundary conditions for the 
Navier-Stokes and energy equations when slip 

The perturbation parameter E can also be and temperature jump at the body surface are 
expressed as neglected, are : 

(1.7) 
conditions at the body 

U (S, 0) = 0, t’ (S, 0) = 0, T (S, 0) = Tb (s). 

If it is assumed that the viscosity coefficient p (1.9a, b, c) 
is proportional to T to some power w then 6, the Upstream conditions 
perturbation parameter, can be written as u+v-+i 1 (1.9d) 
follows. 

1 
(l.f9 p+--l 

YM, 1 asnaco. (1.9e) 

Here Ma is the free stream Mach number, and 
R, the Reynolds number formed with the nose 

p --f 1 J (1.9f) 

radius as reference length. Where u and v are taken to be the velocity 
~- - vectors and i is a unit vector parallel to the body 

t The symbol - means ~ym~totica~ly equal to. axis in the streamwise direction, 
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The inner expansion is valid in a region of 
O(i) near the body and the outer expansion is 
valid in the region outside this region of O(E). 
In substituting the inner and outer expansions 
into the Navier-Stokes and energy equations the 
resulting partial differentiat equations from 
taking successive terms in E are of lower order 
than the originat equations, This means that wc 
cannot in general expect the resulting equations 
to satisfy all of the boundary conditions which 
the originaI Navier-Stokes and energy equations 
satisfied. For instance we do not expect the outer 
expansion to satisfy the condition of zero u 
component of velocity at the wall, or if slip is 
permitted the slip condition will be violated. This 
means that the “lost” boundary conditions must 
be replaced by something which makes the 
problem determinate_ These conditions are 
found to be the matching principle of Lager- 
strom ]6]. A good explanation of the matching 
principle along with a more rigorous discussion 
of inner and outer expansions in general can 
also be found in a paper by Erdelyi 1121. 

The matching principle can be stated as 
fallows : 

m-term inner expansion of Q-term outer 
expansion) 

X= j34erm outer expansion of (~-term inner 
expansions. 

Van Dyke [I] apphed this principle with 
JR zz p and m = p - I and obtained the 
appropriate matching conditions. 

This way of applying the matching principle 
perhaps obscures what is actually taking place 
in the matching process, and a more simple 
procedure is possible. It is desired to find the 
appropriate vahzes which the terms in the outer 
expansion should approach at the wah and the 
values which the terms in the inner expansion 
should approach as N, the inner variable, goes 
to infmity. The matching principle supposes that 
there is a relationship between these two be- 
haviors, or an overlap region. If we suppose this 
then the following should seem reasonable. 

Suppose we have some quantity in the flow 
field, say a the component of velocity normal to 
the wall. Then in the outer region c is given as 
follows from equation (1.2b) : 

1’- VI&n) t rVz(s,n) f . . . . fl.fOa) 

In the inner region P is given as foilows from 
equation (1.3b). 

P -u E L‘~ (s, N) + + (s, N) -+- . . .a (l.lOb) 

There are two ways in which we will match 
these qu~tities_ The first is ~~~orrned in the 
overlap region or the region in the inner variable 
where N -+ co. This is done as follows: 

The inner expansion in this region simply 
becomes : 

(l.lOc) 

For the outer expansion we must expand the 
terms in a series about n =-; 0 as follows: 

(1.10e) 

Therefore in the overlap region of the outer and 
inner expansions we have for the outer expansion 

as iif--+ 32. (l.lOf) 

Therefore since we have assumed that the be- 
havior of these functions are the same in the 
overlap region we have from equating co- 
efficients of equal powers of E the following: 

This is exactly the same result as obtained by 
Van Dyke [I]. equation (2,4Ob), This procedure 
gives a rest& equivalent to taking m = p in the 
matching principle. 

Next we can match in a similar manner by 
expanding the inner expansion to N = 0 in an 
asymptotic series about a large value of N. We 
then equate this to the value of the outer ex- 
pansion at PI = 0. We have again assumed here 
that the inner expansion for large N behaves in 
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the same manner as the outer expansion for 
small n. 

For the inner expansion we have equation 
( 1. lob). Therefore expanding to N = 0 about a 
large value of N (let us say ND) in an asymptotic 
series gives : 

1‘ N E [rr (s, No) - No L.IN (s, No)] + . . . 

as N,-+co. (l.lOi) 

We notice that in the asymptotic series expansion 
for zkl (s, N) above only two terms are needed 
since C~XX (s, N) and all higher derivatives in N 
are exponentially small as N goes to inanity. 

From the outer expansion we get at n = 0 

1’ - VI (s, 0) + E v, (s, 0) + . . . (l.lOj) 

Equating coefficients of equal powers of c we get 
as before 

v, (s, 0) L= 0 (l.lOk) 

and in addition 

Vz(s, 0) = lim [rt, (s, N) - Nr*r,v (s, N)J (1.101) 
N-m 

which is Van Dyke’s equation (2.39) and is 
equivaIent to the result of using the matching 
principle for PIE = p - 1. 

This matching principle is perhaps the most 
crucial part of the analysis since the use of it 
definitely gives a second-order pressure gradient 
due to vorticity interaction as will be seen later. 

Still another, and the most physical way of 
seeing the matching of the ~1 components is 
given as follows by using the stream function. 

Physically we visualize a blunt body in a flow 
field. To the first approximation there is an 
inviscid flow around the body with a boundary 
layer (first order). Then in the second approxima- 
tion the boundary layer increases the thickness 
of the body and the outer flow sees a body which 
is thickened by this displacement thickness. 
Then to the second approximation in the outer 
flow, the stream function should vanish at the 
surface of a body which consists of the original 
body plus displacement thickness. As will be 
seen later in equation (1.31) the dispIacement 
thickness can be written as 

s*=< co SL ~_..!e- 
VGW n=o 1 dN. (l.lOm) 

0 
Y 

In terms of the first-order stream function in the 
inner region this becomes (see 1.3f) 

s* = E .ti+; 
h(s, N> 

N - l)lN(S, N) 1 
(l.lOn) 

where 

$I~ == rfpluI and $rs = - rJplt’l (1.100) 

define the stream function. 
Then applying the boundary condition for 

JI (3, n) at the outer edge of the new body given 
by the original body plus displacement thickness 
we have 

v’; (s, ;5*) = 0 = tt, (s, rj*) ‘i- E sr;, (8, s*>. (LlOp) 

It is understood that the zero appearing above 
means zero only to terms of order c. 

Now expanding the above expression in a 
Taylor series about the old body surface we get 

0 = $G, (s, 0) + 8* $I?8 (s, 0) + . . . 

+ q&(s,O)+.... (l.lOq) 

Using the relation for g* we have 

$zl (s, 0) = 0 (I.lOr) 

- N$ln (3, OX (1.10s) 

Now we use the fact that 

#ln (s, 0) = YLY 6, N) as N -+ 03 

which has been known since the boundary-layer 
theory of Prandtl or is known from matching. 

Therefore as a final result we have 

&(s,O) == lim [#r&N) - N~~~(~, N)] (1.100 
N-ha; 

or di~erentiating with respect to sand using some 
other relations we can show that 

V,(s, 0) = lim [Q(s, N) - N U~N(S, N)]. (l.lOu) 
X-+ CC 

The analysis above is not very complete and 
reasoning such as this can lead to serious error, 
but in this case it does give some further physical 
insight into what the matching principle gives. 

VI. First- and second-order equations fbr the 
~5undary layer 

First the full compressible Navier-Stokes and 
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EQUATIONS INCLUDING THE EFFECT 

OF VORTICITY DUE TO ENTROPY 

GRADIENT ONLY 

D@erential Equations 

Continuity 

energy equations are written in the co-ordinate 
system of Part 1, non-dimensionalized by 
equations (l.la-r) and expanded first into the 
outer expansion and then into the inner ex- 
pansion by equations (1.2a-e) and equations 
(1.3a-e). Then by collecting terms in successive 
powers of E and equating these to zero we 
obtain the partial differential equations describ- 
ing the outer and inner flows. By simplifying 
these results we can obtain the following equa- 
tions. They comprise both plane and axisym- 
metric flow. The exponent j equals 0 for plane 
flow and equals 1 for axisymmetric flow. The 
subscripts s and N indicate differentiation, and 
S; denotes dS,/d$, where S, and $r are the first- 
order entropy and stream functions respectively 
in the outer inviscid flow. (The conventional 
entropy and stream function obtained from the 
compressible Euler equations.) 

p1 

V (fr% + P~~JI~ + V ho2 + ~2~31~~ = 0. 
(1.17) 

Momentum 

PI ($%s + %u1s + 4U2N + u2ulhr 

+ P2 (vu + v,&N) - (pU2N + $%iVt,)N 

= - rj (S;R’fT,V,),,=,. (1.18) 

Energy 

FIRST-ORDER BOUNDARY-LAYER 

EQUATIONS 

Diferential equations 

Continuity 

(1.11) 

Pressure condition 

Plf2 + P2h = 0. (1.20) 

Boundary conditions 

u2(~,0)=z~2(s,0)=t2(s,0)==0. (1.21a,b,c) 

Matching conditions 

~2 6, N) - - Nrj (S;RIT,)n=o 

1 

(I .22a) 

asN+ W. 

,(Ul~+vl~)(tl+;~:) -&[ll(+t1 
+;u: =o. 11 (1.13) 

N 

t2 (s, N) - Nrf (S;R,T,UI)n=~ (I .22b) 

The term S;(O) appearing in the above 
equations is defined as below: 

Pressure condition 

p& = (RJ&“. (1.14) 

Boundary conditions 

uI(s, 0) = u~(s, 0) = 0 (l.l5a, b) 

tl (s, 0) = Tb (s) (1.15c) 

or a condition on the wall heat transfer. 
ds4-J s;(o) = -@z 

Matching conditions 

%(s,N)- K(s,O) ’ as N+ cc 

tl (s, N) - Tl (s, 0) I 
(1.16a) 

’ (1.16b) 

4(r - l)(M2, - 1)2 al+1 
= - [2yA42, - 

~ 

(y - l)] [2 + (Y - 1) M2,l 01-’ 
(1.23) 

where 01-j = 0 for plane flow and 1 for axi- 
symmetric flow. a is the ratio of body to shock 

These are the familiar compressible boundary- 
layer equations in non-dimensional form. 

348 R. T. DAVIS and I. FLUGGE-LOTZ 
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nose radius. Therefore we see that there is no 
effect of vorticity for plane flow to the second 
order. 

There is also an effect of vorticity due to 
H;(O), the enthalpy gradient. However in flows 
where the enthalpy is constant throughout the 
flow field in front of the shock wave, it will 
remain constant across the shock wave and 
H;(O) zzz 0. This is the usual case and we will 
therefore not consider this effect here. 

The term on the right-hand side of the second- 
order momen~m equation (I. 18) is actually the 
second-order pressure gradient due to vorticity 
since it can be shown that 

P,Y = rqq T&V&=0 (1.24) 

Various authors have said that this effect does 
not exist or that it is negligible. In the numerical 
examples (Fig. 16) it will be shown that this 
effect is not only important, but also that the 
second-order terms in heat transfer and skin 
friction obtained by neglecting it can be off by 
a factor of 2 or more.7 

Appearing on the right-hand side of the 
second-order momentum equation (1 .lS) is the 
quantity Vz (s, 0). It has been shown in equation 
(1 .lOl) that in applying the matching principle, 

Yz (s, 0) = lim (Q - NQX). (1.25) 

This means that c:mdo not need to solve the 
second-order problem for the outer flow in 
order to calculate the second-order effect of 
vorticity in the boundary-layer. As would be 
expected the first-order equations for the outer 
flow do not show a viscosity influence and there- 
fore turn out to be the familiar compressible 
Euler equations. 

VII. Heat transform smear stress, and dispIa~~ 
ment th~ck~ess 

The non-dimensional heat transfer and shear 
stress are defined as follows: 

Heat transfer 
1 /--* 2iT* 

_” ._ 
(1.26) 

t Added in proof: This pressure gradient term conId be 
included instead in the term for the effect of disnlacement 
thickness, however most authors fail to include it in either 
place. 

Shear stress 

1 al&* 
?=- 

p*,u*,2 I” 
* - = E ?I + 3 F2 + . * . . (1.27) 

an+ 

In terms of the fist- and second-order 
boundary-layer quantities the non-dimensional 
heat transfer and shear stress are then found to 
be as follows: 

Heat transfer 

+ fL’ (1,) t2 2 1 + . * * . (1.28) 

Shear stress 

L _I 

(1.29) 

The displacement thickness for the first-order 
boundary layer is defined as follows: 

8” = s,; [l --&&]~=d& (1.30) 

Using non-dimensional quantities we therefore 

2. SOLUTION OF THE FIRST- AND 
SECOND-ORDEX BOUNDARY-LAYER 

EQUATIONS 

There are few exact solutions known to the 
first-order compressible boundary-layer equa- 
tions. These solutions are for either very special 
flow conditions where the governing partial 
differential equations can be solved directly or 
for conditions where similar solutions can be 
obtained by reducing the partial differential 
equations to ordinary differential equations and 
integrating these equations numerically. Some 
of these solutions could be extended to the 
second-order boundary-layer problem, however 
since we are interested in solving the problem 
of the boundary-layer on an axisymmetric blunt 
body of arbitrary shape it seems advisable to 
proceed in a manner which will allow us to solve 
the equations when arbitrary boundary and 
external conditions are given. This suggests the 
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use of a numerical method of solution, such as 
a modi~cation of the finite difference method 
given by Fliigge-Lotz and Blottner [8]. Their 
method was developed for the plane case only, 
but it could be easily modified to the axisym- 
metric case. In order to USC such a method it is 
necessary to find velocity and temperature 
profiles near the stagnation-point for starting 
values for the finite difference scheme. It seems 
that an ideal method of finding these starting 
profiles is the use of a Bfasius Series a? given by 
Van Dyke [I] where the velocities, temperatures, 
etc. are expanded in power series along the body 
and the resulting ordinary di~erentiai equation:; 
are integrated numerically. The first term of these 
series will give the solution near the stagnation 
point. Second and third terms in the series will 
give greater accuracy for the computation of 
How quantities away from the stagnation point. 
The Blasius Series may converge in the entire 
subsonic region, however since we are interested 
in calculating quantities in the boundary-layer 
at points on the body further back than the 
region of convergence of the Blasius Series it 
seems advisable to start with the finite difference 
scheme as near the sta~ation-point as possible. 
We will therefore find solutions to the problem 
for the first two terms of the Bfasius Series for 
the first-order boundary-layer equations, and 
the first term of the series for the second-order 
effect of vorticity with the idea of later using 
tflese results to proceed downstream with a 
finite-difference method. 

I. Mangler, Howarth, Dorodnitsyn trunsfor- 
mation 

Hayes and Probstein ([2], p. 290) have used a 
transformation which includes the Mangler and 
Howarth-Dorodnitsyn transformations to trans- 
form the first-order boundary-layer equations 
into a form where similar solutions can be easily 
obtained. A Blasius Series (p. 322) is then used 
in the transformed variables to obtain ordinary 
differential equations for the solution of the 
blunt body problem. The same procedure could 
be used here for both the first- and second-order 
equations and solutions in the transformed 
variables could be obtained, however it seems 
that it would be advisable to stay as near the 
nhvsical variables as oossible. This is e%%ciallY 

ilnportant when it is intended to use the results 
as starting values for solving the boundary-layer 
equations by the finite-difference method of 
FKigge-Lotz and Blottner [8]. Their method 1 
uses the physical variables and method II uses 
the Howarth-Dorodnitsyn transformed vari- 
ables. This means that if the physical variables are 
used for the stagnation-point solutions it will be 
much easier to go directly to method I and will 
also be easy to use method II. It is also desirable 
to stay as close to the physical variables as 
possible since it is easier to see how the flow 
quantities are behaving in physical variables 
rather than visualizing them in the transformed 
variables. WC might also consider LI& the 

Mangler transformation to transform the axi- 
symmetric flow case to an equivalent two- 
dimensional flow problem. However, the use of 
the transformation is disappointing, since the 
resulting pressure gradient on the transformed 
blunt body, a transformed sphere for example, 
goes to infinity like 1 /S1!3 as S -+ 0 where S is the 
Mangler transformed variable. This means that 
the use of a finite difference method near the 
stagnation point of the transforlned body would 
prove difGcult. The Mangler transformation also 
does not offer any advantage in solving the 
equations by a Blasius Series method and there- 
fore there seems to be no reason for using it. 
Another reason for using the physical variables 
is that if transformations of the type given by 
Hayes and Probstein [2] are used on the second- 
order equations (1.17-I .20), the resulting ex- 
pressions become very complicated. For these 
reasons the expansions used will be obtained 
from expanding directly in the physical di- 
mensionless variables. 

II. B~as~u~ Series j&r the ~o~~t~on of the jirst- 
order boundary-layer equations 

Following Van Dyke [I] we expand the flow 
quantities in a Bfasius Series. The choice of odd 
and even powers of s in the expansion can be 
explained by observing that the u component of 
velocity must be an odd function of s whereas 
all other flow quantities must be even functions 
of s. Subscripts 10 mean dimensionless inviscid 
stagnation-point quantities, i.e. Pi0 is the di- 
mensionless inviscid stagnation-point pressure. 

The expansions for the outer flow quantities 
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evaluated at the body are as follows: 

PI (8, 0) = PI* (1 - ?T.$P - %,9 + . , .) (2.1) 

u, (s, 0) = “‘ps + ws + . . . (2.2a) 

where it can be shown that 

Y--l l/2 
$1’1 = 2 -.-- r,, 572 

Y 
(2.2b) 

and 

The body temperature and radius are expanded 
as follows : 

Tb (s) = r,, (h, + &s2 + . . .> (2.3) 
/J(s) ==si(l +-jr,s2+. ..). (2.4) 

By introducing the stream function we can 
satisfy the continuity equation (1.11). The 
Blasius Series expansion for the first-order term 
of the stream function is as follows : (see equation 
1.3f) 

+ H’prJ,3 (?p + * . .]. (2.5) 
Where the stream function satisfies the following 
relations : 

The expansions for the temperature and 
viscosity are as follows : 

h 6, N, = % ET1 cd + 1T273 w + . . -1 (2.7) 

EL (fl> ==PlO kl(rl) + T&3 (W + . * .I. (2.8) 
Where in all of the above expressions 71 is 
defmed as 

(2.9) 

From the relations (2.1) and (2.7) we find that 
the expansion for the density has the form 

,,=,,[~$?(;-+ 1)sp+...]. (2.10) 

Expansions for the velocity components, shear 
stress, heat transfer and d~spla~ment thickness 
folLow easily and are given below: 

+ 1 --j:* 
)I 

sat... (2.11) 

fl -jz)].@+.-.} 

+ g3+s2 -t * * *I (2.14) 

li2 

f3 

_- ____ ;Y+++p +. . .). (2.15) 

The limit as 7 -+ cc of 7 -fi in the displace- 
ment thickness expression also appears later in 
the second-order equations, and will remain 
finite in the limit. 

Substituting expressions (2.7)-(2.12) into equa- 
tions (1.1 I)-( 1.16) we obtain the ordinary differ- 
ential equations for the first two terms of the 
series. 

First terms 

r&3(f;~1)‘1’ + (j + i1.L w;)’ - 9s;” = - 1 
(2.16a) 

[gI+]’ i- u (j f I)$, = 0 (2.16b) 

fi (0) = 0, f; (0) = 0, 71(O) = b, (2.16~) 

f; (to) = 1, 7r(co) = 1 (2.M) 

Second terms 
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; kF37; + g1Q - 2fiT3 + (j + Rk; 

+ (j + 3) 7;f3 = 2 rz -.’ 
i 1 Y , 

[f’ 
lT1 

(2.17b) 

f$ (0) = 0, f; (0) = 0, 73(O) = ; (2.17~) 
” 

(2.17d) 

The equations for the first terms represent the 
flow in the region near the stagnation point. 
The second terms allow greater accuracy away 
from the stagnation point, and higher accuracy 
is obtained by using third and higher terms. 
Integration will be carried out for the first and 
second terms only. The equations for the first 
term are non-linear and will present the greatest 
difficulty in integration. The equations for the 
second terms are linear and as in the incom- 
pressible case can be divided into universal 
functions and integrated once and for all once 
b,, is chosen in the equation for the first term. 
(See for instance Schlichting [9], p. 185 for the 
incompressible case). 

III. Blasius Series for the solution of the second- 
order boundary-layer equations .for the 
eflect of corticity 

In a manner similar to Section II we expand 
the second-order equations. The second-order 
term in the stream function, &(s, N), satisfies the 
second-order continuity equation ( l-17) by 
taking 

lfizN = rj (Pl% A- P&l (2.18) 

$& = - 7.j (Wz + W,). (2.19) 

Then for the same reasons as in the first-order 
equations (Section II, paragraph I), we take 

tz (s, iv) = 2 s; (0) E$!z!J 
i 1 Ii2 b-2 (4 + . . .]. 

1 1 

(2.21) 

From equations (2.21), (2.7) and (2.10) along 
with (1.20) we find the expansion for pz 

(2.22) 

Equations (2.18) and (2.19) yield the expansions 
for the second-order velocity terms 

cl2 = I-*, s; (0) (“:ri”‘“)“’ 
[cT,f; + T,~;) s .t . . .I (2.23) 

T 10P10 s; (0) 
p2 = _-. __._ 

x1 
(1 +A K%f2 

f TzfJ -t . . ‘1. (2.24) 

Second-order shear stress and heat-transfer 
effects are given by 

~:z = ~10 R,o T,o S; (0) g, W’; + d’;>’ 

(2.25) 

(2.26) 

Substituting these expressions into equations 
(1.17- (1.22) we obtain the differential equations 
for the first terms of the series for f2 and TV and 
the necessary boundary conditions. 

rL’f;” = 2/31 

(2.27a) 

(gpz)” + (1 + j) 0 <AT; +.h+ = 0 (2.2%) 

J;3 (0) = 0, j’; (0) = 0, 9 (0) =-= 0 (2.27~) 

(2.20) f;‘(m) = - 1, T,(cO) :=: 0 (2.27d) 
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with 

A = lim (q -0 

free stream Mach numbers and temperatures. 
(2.27e) This law can be written as follows: 

1)--t* 

The 2/J term on the right-hand side of equa- 
tion (2.27a) comes from the second-order 
pressure gradient due to vorticity interaction. In 
its original form (before specialization to the 
stagnation point region) it appears on the right- 
hand side of the second-order momentum 
equation (I. 18). The second-order pressure 
gradient is given as follows from equation (1.24) 
withj = 1. 

PL* 
-ZtZ 

CLT 
(2.28) 

Where &? and t: are reference viscosities and 
temperatures respectively. C* is a constant which 
when taken to be 198+6”R gives a good fit of 
experimental data to the Sutherland law. Using 
the relation (1.11) we non-dimensionalize the 
viscosity law so that 

PZ$ = r (R: T, S; V&=,. 

From equation (1.25) 

V, = lim (u, - Nu~N). 
N+m 

where 

(2.29) 

cp*c* 
C’=7. (2.30) 

m 

Near the stagnation point using equations From equation (2.7) we have for the first-order 

(2.12), (2.16~) and (2.16d) we have temperature the expansion 

112 fl(& N) = 7;, [71(?) + T2T3(@2 + . . *I. 

lim(T -f,)+.... 
?+m Therefore substituting this into equation (2.29) 

(2.27f) and expanding in powers of s we find for the 

Therefore we get for P2, near the stagnation 
first-order viscosity term 

point pt&) = (Tl,, 73”‘s (I + C? 

P2a = 2s T,, S; (0) R&, 

Where lim (7 -fi) = /3i from (2.27e). 

We now see how the second-order pressure 
gradient near the stagnation point depends on 
/3,. We also see from equation (2.15) its de- 
pendence on the displacement thickness. 

The solutions of equations (2.27) represent the 
second-order effect of vorticity near the stag- 
nation point. Further terms can be found, 
however they will become quite complicated 
since they will involve the first two terms in the 
first-order equations and the first two terms in 
the second-order equations for the vorticity 
effect. 

IV. Viscosity law for high free stream Mach 
numbers and temperatures 

The viscosity law will be taken to be Suther- 
land’s, and will reduce to a simpler law for high 

(2.31) 
Therefore the coefficients in equation (2.8) 

CL(f1) = CL10 l&(T) + 772&(7M + * * *I 

are determined with 

1 + C’ 
~10 = V~o)3’2 T,. + c,. 

We find that 

(2.32) 

T,, f C’ 
g, ---. (rl)3j2--- 

T,,r, + C 
(2.33a) 

(7-1, + C’) (Tlo Al-+ 3C’) g, = (+!a 73 - 
2(T10Ln)2 (2*33b’ 

when Sutherland’s law is used. With the 
abbreviation 
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we get 

gl = (T1)3!2 l-~+c 
71 + c 

(2.34b) 

g, = (Tp 78 (' ;(~)~1;,3c). (2.34~) 

From equations (2.34b and c) along with (2.34a) 
we see that when the denominator is sufficiently 
large (i.e. large free stream Mach number and 
temperature) C can be neglected in comparison 
to TV and 1. For this case we get 

(2.35a, b, c) 

We will use this viscosity law in the integration 
of equations (2.16), (2.17), and (2.27). We could 
use the more exact Sutherland law, however we 
would have to integrate the equations every time 
the free stream conditions are changed (Tz and 
M,) due to the presence of the constant C. How- 
ever with equations (2.35) we need to know only 
b, = Tb(O)/T,,,, the ratio of temperatures across 
the boundary layer at the stagnation point, in 
order to integrate the equations. 

3. INTEGRATION OF THE ORDINARY 

DIFFERENTIAL EQUATIONS RESULTING 

FROM THE BLASIUS SERIES 

The ordinary differential equations (2.16) for 
the first term of the first-order boundary layer 
equations are non-linear, and due to their com- 
plexity must be integrated numerically. Modern 
digital computing machines make this problem 
simpler even though they do not eliminate all of 
the problems associated with integrating such 
equations. After the solutions are obtained for 
these equations, the solution of the equations 
for the higher order terms will be simpler 
since the equat$ms for these terms are linear. 
The difficulty with the non-linear differential 
equations for the first terms arise because of the 
boundary conditions. The two non-linear equa- 
tions present a system of fifth-order and conse- 

problem. The procedure used for the integra- 
tion was the fourth-order Adams predictor 
corrector method with accuracy to approxi- 
mately five decimal places. The boundary 
conditions at infinity were satisfied by guessing 
two conditions at 7 = 0 and integrating to 
7 = 5 and seeing if the conditions at infinity are 
met. The value of 7 = 5 was used since it was 
found that it was sufficiently large for checking 
that the unknown functions approached their 
correct values at infinity. The initial estimates 
were obtained from Table I of Cohen and 
Reshotko [lo], where a similar problem was 
solved using a linear viscosity law. Newton’s 
method as given in Appendix B of Reshotko 
and Beckwith [l l] was then used to compute 
new starting values and repeat the integration. 
It was found that after a few trials the procedure 
converged to the correct boundary conditions. 
In integrating the second terms for the Blasius 
series for the first-order boundary-layer equa- 
tions, universal functions were obtained which 
depended only upon the ratio 6, of wall to 
stagnation-point temperature at the stagnation 
point. This requires the solution of four uni- 
versal problems as will be seen later [see (3.5a)], 
and the superposition of these four problems 
gives the complete solution for the second terms. 
The equations for the second-order effect of 
vorticity at the stagnation point were also solved 
and required only one solution since they de- 
pended only upon the ratio of wall to stagna- 
tion-point temperature. 

I. Variables used for the computation of the 
boundary-layer quantities 

In integrating the equations on the computer 
it is convenient that the equations be expressed 
as a set of first-order differential equations. The 
set of two differential equations is therefore 
reduced to a set of five first-order equations as 
follows : 

First-order boundary-layer quantities (see 
Section 2, II). Let 

x1 = .fi, x, 2; .r;, 71 (3.la, b) 

quently need five boundary conditions. Three of 
these conditions are given at v = 0. The re- 

x, = g, (f ; Td’, x4 = 71, x5 = g, 7,‘. 

maining two conditions are given at 7 = 00. 
(3.lc, d, e) 

This is known as the two-point boundary value Therefore simplifying and using equations (2.16) 
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we can get five first-order differential equations Y = l-4 and Q = 0.7, and we are only interested 
for the first terms of the Blasius Series for the in this case, then the number of parameters 
first-order boundary-layer equations with j = 1 reduces to three which are bz]rrz, .ir4,t+ and 
(axisymmetric flow). These equations will not 1 - rs/nz. Therefore, to introduce universal 
be given here since they can easily be obtained functions which when solved determine the 
by substitution. second terms once and for all for a given bo, we 

The corresponding boundary conditions are: let Xi where i = 6, 7, 8, 9, 10 be the following: 

atv=O 

X,(O) = X,(O) = 0, X,(O) = b. (3.2a) X6 = Xi1 -+-~X&~X,, + 1 -2 X$4 
i 1 

atT=az (3Sa) 

X,(co) = X,(W) = 1. (3.2b) with boundary conditions. 

For integrating equations (2,17a and b) we let At rl = 0 

X, =.f, (3.3a) xe1 Co> z X*2 (O> = x8s (O) = x64 Co> = O 

X, = f,’ 7% i- .[I’ 71 + .rt 
(3Sb) 

X,,(O) = X,(0} = X,,(O) = X,,(O) = 0 

x, = 7-s (3.3d) 

X,0 =LW; -f-W;. (3.3e) 

Using equations (2.17) and simplifying we can 
get the equations for the second terms of the 
Blasius Series for the first-order boundary-layer 
equations with, j = 1. As in the case for the first 
terms these equations will not be given since they 
can also be obtained by direct substitution. 

The corresponding boundary conditions are : 

Atq=O 

x, (0) = x, (0) = 0, X,(O) = $. (3.4a) 

Atv=a 

X,(00) =;y*+2g 
2 

i 

(3.W 

_y (a) = - ?-I_! 9 
( 1 .Y * 

It is important to bear in mind that the equa- 
tions for X, to X,, are linear in the dependent 
variables and that therefore superposition will be 
permissible. This fact will facilitate the solution 
for the given boundary conditions. 

In the differential equations for the variables 
and the boundary conditions (X, to X,,,) there 
are five parameters involved. If we assume that 

(3Sc) 

x,, (0) = 0, x,, (0) = 1, x, (0) = 0, 

x,, (0) = 0. 

At? = co 

(3Sd) 

X,,(a) = 1/4Y, X;, (co) = 0, X,, (00) 

= l/2, X,, (Go) = 0 (3Se) 

x,, (co) = - yy.l ) x,, (CQ) = 0, x9, (co) ( i 
= 0, xg, (co) = 0. (3.5f) 

The differential equations for the universal 
functions will not be given here, however, they 
are very easily obtained from the governing 
equations by neglecting certain terms. To obtain 
the differential equations for the XZ, terms 
neglect the terms which have bz/rrz, rr,/v$ and 
1 - r,Jn, as coefficients. The equations for 
Xt, are obtained by neglecting all terms with 
subscripts between 1 and 5 only. The equations 
for Xt, are obtained by neglecting terms with 
subscripts between 1 and 5 oniy which do not 
have rr,/$ as a coefficient, and the equations for 
Xi, are obtained in a like manner by neglecting 
terms with subscripts between 1 and 5 only which 
do not have 1 - r3/v8 as a coefficient. In each 
case the terms which are kept do not keep the 
coefficient (i.e. for Xt3, =&r.$) since the form 
assumed for the universal functions (equation 
3.5a) takes care of this. All of the above is 
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possible since the equations for the variables 
X,-X,, are linear in the unknown dependent 
variables. 

Given below are the relations for the tempera- 
ture, velocities, etc., in terms of the new &, 
variables. They are obtained by using equations 
(2.7, 2.10-2.15) along with equations (3.1) and 
(3.3). 

actual law used in integrating the equations was 
the square root viscosity law given in equations 
(2.35). In terms of the Xis they can be expressed 
as follows : 

Figures 2-14 show the results of integrating 
the equations for the first and second terms of 
the Blasius Series for a variety of wall conditions. 
These figures were computed using the ratio of 
specific heats y = 1.4 and Prandtl number 
CI = 0.7. 

P1=R,,[;~-~(~+ 1)s?+...] (3.7) 

u1 = V’l (X,s + v&s3 + . . .) (3.8) 

Fl(O) = (2~,~2P,,Y,P2 [X3 (0)s 

i_ 7r2& (0)s3 + t + *] (3.10) 

41(O) = - ~(wJLP# LX, (0) 

+ ?7J10 (O)? + . . .] (3.11) 

(3.12) 

All of the preceding relations are in terms of 
X1, X,X,, except where the functions g, and g, 
appear which come from the viscosity law. The 

Values for the unknown X functions [see 
(3.la-c), (3.3a-c) and (3.5a)] are given at 7 I:-- 0 
and O-2 in Table 1. These values are helpful for 
repeating the integration or interpolating to 
obtain initial conditions to solutions having 
different values of 6, (the ratio of wall to 
stagnation point temperature) from those con- 
sidered herein. 

Figures 2-14 show some of the functions 01 
their boundary values _X~J in diagrams: 
i = 1, . . . 9, j == 1, . . . 4. Figs. 2-6 show the 
quantities which determine the coefficients in 
the u1 component of velocity, and the t, tempera- 
ture expression of equations (3.8) and (3.6). 
Equation (3Sa) must be used for superimposing 
the universal functions to get the second terms 
in these expressions. We also see that with the use 
ot Figs. 7-11 we can compute the first-order 
shear stress and heat transfer at the wall by 
using equations (3.10) and (3.11). Finally with 
the help of Figs. 12-14 and equation (3.12) we 
can compute the displacement thickness. 

(a) X*=f, z, (b) X4=-1 

FIG. 2. Coefficients used in the first terms of equations (3.8) and (3.6). 
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lo) x,, tb) -x,, 
FIGS. 3-6. Coefficients used in the second terms of 

equations (3.8) and (3.6) with equation (3.5a). 
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FIG. 4. 
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FIG. 5. 

(b) Xsa 
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(0) -X74 

FIG. 6. 

tb) X0, 

Table 1 

(a) First-or&r results-First terms 
b0 ? XI 

-.. 

0.2 OGOO o.oooooo 
0.200 0.118469 

0.6 O@_M 0.~ 
o-200 O.~# 

1.0 O+MO OMOOOO 
0.200 0.024906 

14 0000 O.OOOOOO 
0.200 0.016635 

2.0 O+MO O+MOOOO 
0.200 O-010832 

(b) First-order results-Second terms 
h ?I X6, 

--- - 
0.2 o.ooo OMOOOO 

0.200 0.023115 
0.6 O@OO O.OOOCOO 

0.200 0+x)4859 
I,0 OQOO 0‘~ 

0.200 0.002247 
1.4 0.000 O.OOOO# 

0.200 0.001438 
7.0 O+lOO OWOOOO 

0.200 omO943 

bo ?I X,2 

0.2 0000 (KwOOoO 
O-200 -0.370879 

0.6 00lO 00MOOO 
0.200 -0.082071 

1.0 OX@0 O+MOOOO 
0.200 -0.030297 

1.4 0.000 0.~ 
0.200 -0.014842 

20 O+MXi OWOOOO 
0.200 -0m6807 

X% X.? X, X5 
- 

04OOOOO 1.093079 0.2OOOOO 0~578725 
0.363445 0.892209 0409440 0.566372 
0.~ I -206979 0.6~ 0.274214 
O-278235 1 QO7253 0668769 0272744 
O@OOODO 1.311938 1+MOOOO O.oooooO 
0.242394 1~112107 1MOOOO OQOOOOO 
O+KWOOO 1408494 14OOOOJJ -@260791 
0.222912 1.208600 1.355579 - 0.260443 
OWOOOO 1.540999 2mOOOO -0.638093 
0.206105 1~341060 1908727 -0.637628 

Xx X81 XCI, X 101 
- 

O+)OOOOO 0.057596 OWOOOO -0.129477 
0036585 0.058965 --0063767 -0.253177 
00XHOO 0.07765 1 O@XlOOO -0.084935 
0.022805 0.077976 -0.035925 .-O-196271 
0,~ 0.094523 0.~ ~0%-!44255 
0019911 O-094697 -0~020607 -0.152178 
OClOOOOO 0.109348 0~ooooo0 -0w5545 
0.018947 0.109470 -0.010959 --0.113604 
00OOOOO 0.128976 0~000000 0.050291 
0.018419 0.129062 --00X298 -0~060616 

X,z X8, XW x 10% 
--_I_ 

00OOOOO O-109830 1WOOOO - 1.208579 
-m0.382648 0.165144 0.346686 -0.991755 

OWOOOO 0.161098 1WOOOO -- I.012232 
-0.147418 0.167336 0.704916 -0.950033 

OQOOOOO 0~160551 1mOOOO -0.942577 
-0.077936 O-162536 0.813731 -0.909857 

0.~ o-154131 l.OOOOOO -0*904881 
-0.049086 0*155070 0.862082 -0.883284 

O-ODOOOO 0.143695 1mOOOO -0871687 
-0.029490 0.144126 0.898135 - 0.857623 
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Table l-continued 

h0 ? X0 

0.2 OQOO OWOOOO 
0.200 0.093869 

0.6 0.000 OGOOOOO 
0.200 OW4840 

1.0 OGOO OWOOOO 
0.200 0.02697 1 

1.4 0~000 OGOOOO6 
0.200 0.018762 

2.0 OaOO 0~000000 
0.200 0.012659 

b, 9 X6, 
_____ 

0.2 OGOO OWOOOO 
0.200 -0~126200 

0.6 OWO omOOOo 
0.200 ~~ 0.049893 

1 .o OGOO OWOOOO 
0.200 PO.027435 

1.4 OGOO OWOOOO 
0.200 -0.018031 

2.0 O.ooO 00XKlOO 
0.200 -0.011496 

(cl Second-order vestdts 
h ? X1, 

___- ___- 

0.2 0.000 OGOOOOO 
0.200 -0~081106 

0.6 0030 OGOOOOO 
0.200 -0.047687 

I.0 0 WO O.oooooO 
0.200 m-O.033856 

I.4 OGOO OGOOOOO 
0.200 -m-O.027022 

2.0 O@OO O.oooooO 
0.200 -0.021578 

XW XSS Xcl, X 10s 

OWXlOO 1.106499 OWOOOO 0.217023 
0.317970 0.733137 0.066260 0*200121 
OWOOOO 1.310664 OGOOOOO 0.107443 
0.277228 0.92037 1 0.026119 0.104979 
OW3OOO I.481382 OWOOO@ OGOOiXlO 
0.256529 1.086410 OGOOOOO O.OOOOOO 
OGOOOOG I.631847 OGOOOOO ~~0.107328 
0.244745 I .235033 -0~018408 -0.106677 
OGOOOOO 1.832201 oaOOOoo -0.268678 
0.234477 1.434165 -0.038862 -0.267779 

X,, X,4 XW X 104 

OWOOOO - 0.207889 O.OOOOOO -0.173619 
-0.058327 -0.184777 -0.053207 -0.162112 

OWOOOO -0.158451 O.OOOOOO -0.078575 
-0.037315 -0.151607 -0~019127 -0~077154 

O+lOOOOO PO.126834 OWOOOO OWOOOO 
-0.025187 ~ 0.123384 OGOOOOO OWOOOO 

OGOOOOO -0.103018 OGOOOOO 0.070612 
-0.017936 -0.100830 0.012116 0.070299 

OWOOOO - 0.075244 OWOOOO 0.167910 
-0.011343 -m0.073881 0.024293 0.167511 

X1, X1, X1, X1, 
-___-- 

O@lOOOO --0.877865 OGOOOOO -0.212018 
-0.300163 --0.799847 ---0.065140 -0~199781 

OWOOOO - 1.303454 OGOOOOO -0~131161 
-0.308108 - 1.152270 -0.031935 -0.128920 

omoOOo - 1.768602 O.OOOOOO O.OOOOOO 
-0.330981 ~ I.541463 O.OOOOO0 O.OOOOOO 

OGlOOOO - 2.260686 O.OOOOOO 0.173065 
-- 0.359451 ~~ I.958985 0.029695 0.172268 

OGOOOOO ~~ 3.035639 OGOOOOO 0.501336 
-0.405141 m-2.629140 0.072528 0.500042 

- -_ 

When b,, rr,, r8, etc., are knownin a specificcase 
and high accuracy in the temperature, velocity, 
etc., in the boundary layer are required, we can 
compute the exact initial conditions X,, X,, X8 
and X,, with equation (3Sa) and the use of the 
initial conditions on the universal functions. 
We then use the governing equations to integrate 
directly to find the required quantities. In doing 
this we are, however, limited to the specific cases 
of wall conditions computed as examples. 

Second-order boundary-layer quantities (see 
section 2, Ill). For the second-order effect of 
vorticity we define X,, through XI, as 

follows : 

Equations (2.27a, b) yield five first-order 
differential equations for the variables XI, to 
X,,. These equations will not be given here 
since they can be obtained by direct substitution. 
The corresponding boundary conditions are 
[see (2.27c, d, e)]: 
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The relations for the second-order temperature, 
velocities, etc., in terms of the Xf variables are: 

-0 

X,(O) and X&O) 

FIG. 7. Coefficients used in the first terms of equations 
(3.10) and (3.11). 

z/ 
2 

= _ 2 Lmoywo 
___ [V&l, + ~I-&,) + 9 * .I WI 

(3.20) 

At?=0 

~(0) = k. k, T,, s;(O) [~,,(O)S + . . .I (3.21) 

a2(0) = _ ! Rloko 
CT 

7 T:, s; (01 [x,,(O) + ' * *I. 
1 

(3.22) 
X,,(O) = X,,(O) = X,,(O) = 0. (3.16a) 

AtT= co 
In integrating the equations for X1,-X,, the 
relations for g, and g, for the square root 
viscosity law were used as previously given. 

(3.16b) 

_- t The condition at infinity on X1, given by equation 
(3.16g) can be explained as follows. 

Using equations (3.15~) and (3.15b) we get 

x,, = &(M% + Tf’>‘- 

0%4 006 008 

Knowing the asymptotic nature of the above functions 
as 7 goes to infinity we obtain ~Lfl% -(-7) from (2.16d) 
and (2.27d), ~8f’~ - 0 from (2.27d) and (2.16d), and 
8, - 1 from (2.34a) and (2.16d). Substituting this into 
the expression for X,, we get Xi, - 1(--r))’ or X,, - - I 
as7j+Ca. 

-0.16 -0~12 -0.08 -0.04 0 0.04 

(b) x,O,(O) 

FIGS. 8-l 1. Coefhcients used in the second terms of equations (3.10) and (3.11) with equation (3.5a). 
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0.14 015 016 oi7 

(0) X8? (0) 

FIG. 9. 

b) 

2.0 

18 

I.6 

I.4 

I.2 

b, 10 

08 

06 

04 

0.2 * 

0 
l.0 1.1 I.2 I.3 14 I.5 I.6 I.7 I.8 1.9 

(0) X83 (0) b) xlo3(o) 

FIG. 10. 

In addition the following is the proper definition 
for dgddr, as given by equation (2.35b). 

dg, 1 1 _=_ 
dT1 2 (-2. (3.23) 

As in the &St-order case, results for the 
second-order terms are given in diagrams; see 
Figs. 15 and 16. Fig. 15(a) shows a plot of Xi2vs. 7 
which when used with equation (3.19) determines 
the second-order contribution to the velocity 
profile parallel to the wall. Similarly Fig. 15(b) 
shows a plot of X1, which when used with 
equation (3.17) determines the second-order con- 

tribution to the temperature profile. Figs. 16(a) 
and 16(b) along with equations (3.21) and (3.22) 
determine the second-order contributions to 
shear stress and heat transfer at the wall. A 
square root viscosity law was used for computing 
most of the points given on these figures, 
however, two points are included for the linear 
viscosity law so that the influence of a different 
viscosity law can be seen. As in the first-order 
case values for the unknown X functions (3.15a- 
c) are given at 7 = 0 and 0.2 in Table 1. 

Finally by using equations (1.3), (1.26), (1.27) 
and (1.31) we can find the total flow quantities 
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FO- 

I.8 - 

I.6 - 

I.4 - 

I.2 - 

6. I.0 

0.8 - 

06 

04~ 

0.2 - 

o- 
0-c 

-- _._~ ._I.. 

__.I_. / __.. ._~ _._ 

.__ -__*_... i 

16 0.10 0.14 0.18 0.22 O-26 

. 

-01 0 01 02 

(0) -xa4 (0) (b) x,a4(“) 
Rc;. t 1. 

FIG. 12. Coefficient used in the first term of equation (3.12). 

16 k7 113 19 20 2.1 2.2 2.3 24 04 09 c-6 0.7 0% 

(0) 5, (5) (b) -X&5) 

FIG. 13. Coefkients used in the second term of equation (3Sa). 
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40 4.2 44 46 4.6 50 5.2 

(a) X&5) (b) -X&5) 

FIG. II. CJeficients used in the second term of equation (3.51). 

(a) X,2=r,f*‘+T2f,’ (b) X,, = ~~ 

FIG. 15. Coefficients used in equations (3.19) and (3.17). 

in the boundary layer including first- and second- 
order effects. 

4. COMPARISON WITH OTHER THEORIES AND 

EXPERIMENTS 

There have been several methods developed 
for treating the problem of viscous compressible 
flow over blunt axisymmetric bodies in the 
Reynolds-number range where Reynolds num- 
bers are too small for. the conventional first- 
order boundary-layer equations to give reason- 
able results. These methods fall into essentially 
two categories. In the first category the idea of a 
boundary-layer with an external inviscid flow 
region is used. In the second category the entire 

flow field is treated at once including the neces- 
sary viscous effects. There are several methods 
which fall under the first category. One of these 
is to approach the problem as a singular pertur- 
bation problem and to use the method of inner 
and outer expansions to find the first- and second- 
order boundary-layer equations. Examples of 
this method are the methods of Van Dyke [l], 
which is followed in this paper, Lenard [19], and 
Maslen [3, 181. Another method which falls in 
the first category is the method where the 
conventional boundary-layer equations are 
modified to take care of vorticity or other higher 
order effects. In this method the idea of the 
boundary-layer accompanied by an outer inviscid 
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0 0.4 
(b) x,,(o) 

FIG;. 16. Coefficients used in equations (3.21) and (3.22). 

region is retained, but the conventional first- 
order boundary-layer equations are modified to 
take care of the higher order effects. An example 
of this method is the method of Ferri, Zakkay 
and Ting IS]. The second category consists of 
retaining the essential terms in the Navier-Stokes 
equations to obtain a viscous flow model which 
reflects the essential effects which are under 
study. One example of this is the method of 
Cheng [4j or Cheng and Chang 1171 where the 
thin shock layer approximation is applied to the 
Navier-Stokes equations to describe the flow 
around a blunt axisymmetric body, and solutions 
in the stagnation region are obtained, Another of 
this type of solution is that of Ho and Probstein 
P31. 

In order to verify any theory experiments are 
necessary, and unfortunately the experiments in 
verifying the various second-order theories are 
quite difficult and definite answers have not as 
yet been obtained. The experiments carried out 
thus far, like the theory, do not show the agree- 
ment that one would hope for. One group of 
experiments, carried out by Ferri, Zakkay and 
Ting [5] in the hypersonic wind tunnel at the 
Polytechnic Institute of Brooklyn agree very 
well with their own theory. Another set of experi- 
ments carried out in the low density wind tunnel 
at the University of California by Hickman [ 141, 
on the other hand, agree well with Van Dyke’s 
theory but cannot be used to rule out the results 
of the authors who neglected the second-order 
pressure gradient in the vorticity term (i.e. 

Maslen, and Hayes and Probstein). The scatter 
in Hickman’s data is sufficient so that the cases 
of second-order pressure gradient included and 
also no second-order pressure gradient fall with- 
in the scatter. If Hickman’s experiments are 
correct, they do, however, tend to rule out the 
theory of Ferri, Zakkay and Ting since most of 
the experimental data of Hickman falls below 
Ferri, Zakkay and Ting’s theory and experi- 
ments. A third set of experiments are the shock 
tube experiments run at the Cornell Aero- 
nautical Lab. by Wilson and Wittliff [15]. They 
tend to show an increase in heat transfer over the 
first-order boundary-layer as all of the other 
experiments have shown but there is enough 
spread in their data so that it cannot be used to 
rule out any of the theories discussed herein. 
All of the theories discussed herein show an 
increase in heat transfer due to the effect of 
external vorticity and fall within Wilson and 
Wittli~s data. All of this indicates that while 
experiments have been run, no definite con- 
clusions can be drawn as yet as to the most 
correct ones. A great deal of experimental work 
must still be done before any of the theories 
developed thus far can be justified on an ex- 
perimental basis. Another point which has often 
been overlooked is that there are other second- 
order effects besides the effects of external 
vorticity. The second-order effects have not been 
separated out in the experiments so the measured 
experimental results always include all of these 
effects. Van Dyke [16] has shown that when all 



THE LAMINAR COMPRESSIBLE BOUNDARY LAYER 365 

of the effects are included, the agreement be- 
tween him and Hickman’s least squares fit to 
experimental data is not nearly as good as the 
agreement when only the vorticity term is 
included. These other second-order terms have 
not been included by Ferri et al. in their theo- 
retical analysis, so it is questionable as to 
whether their experimental data should agree 
with their theory if you assume that their theory 
is correct. 

In order to compare the results obtained here- 
in with other theories and experiments we intro- 
duce in the following sections the notations of 
the other authors referred to previously. 

1. The vorticity interaction parameter 
Hayes and Probstein [2] p. 370 define a 

vorticity interaction parameter, which is defined 
as the ratio of the vorticity at the outer edge of 
the boundary-layer to an average vorticity across 
the boundary-layer. Taking their definition and 
using the variables introduced herein we find 
that in the stagnation-point region, i.e. in 
keeping only the first term in the Blasius Series 
in both the first- and second-order theories, 

(4.1) 

where Q, is the vorticity interaction parameter, 
w is the power in the viscosity law PaTw, and all 
other symbols are as previously defined. Notice 
that according to this definition of the vorticity 
interaction parameter Q, --f co as 6, --f 0 for 
w < 1. For our case w = l/2, therefore, the 
interaction parameter becomes infmite as the 
ratio of wall to stagnation-point temperature 
goes to zero. This is due to an improper definition 
of a suitable boundary-layer thickness by Hayes 
and Probstein, since by using their definition the 
“suitable” thickness of the boundary-layer goes 
to co as b,, --f 0. This difficulty does not arise 
when w = 1 since the term containing b. drops 
out and Sz, remains bounded as b,, --f 0. There- 
fore, for a highly cooled body (b,, -+ 0) this 
definition makes sense only for the linear vis- 
cosity law. This difficulty arises because of the 
reference values of p* and CL* appearing in the 
transformations given by equations (8.29) of 

Hayes and Probstein [2]. Instead of using pz,i, 
and &,,, in the transformations, values could be 
used which do not cause trouble as the ratio of 
wall to stagnation-point temperature, goes to 
zero, One possible choice would be to use 
reference values such as Cheng [4] used. He 
employs a reference temperature in the stagna- 
tion-region of (t:,,, + t&J/2. When this 
value is used in the reference viscosity and 
density instead of tz,,, then no trouble arises as 
b,, goes to zero and Q, the new vorticity inter- 
action parameter, behaves properly. 

For the sake of comparison with other results 
the stagnation-point heat transfer and skin 
friction can be written as follows using the 
vorticity interaction parameter. Using the first 
term of equations (2.13) and (2.14) and equations 
(2.25) and (2.26) and dividing through by the 
first-order term we have: 

7 a 1 _ 2/(z) bo(l-oi2)f~(0) Q 

.f;' (0) p 
(4.2) 

4 a 1 _ d(2) &(l--w/2) 7;(o)Qp 

r; (0) 
(4.3) 

or from equations (3.10) and (3.11), and (3.21) 
and (3.22) 

x,2 (0) 7 a 1 - 2/(2) bJl-w/*) x,co,Qp 

x1 6 (0) 
q a 1 - d(2) b0(1-w’2) x, (o) s2,. 

(4.4a) 

(4.5a) 

Figures 17 and 18 show the results of plotting 
-X1,(0)/X,(O) and -X1,(0)/X,(O) versus b,. 
These are the important quantities in the shear 
stress and heat-transfer expressions of equations 
(4.4) and (4.5). The reference to points of other 
authors is given in a form similar to that of 
Probstein in a poll of the various authors who 
have computed the second-order effect of 
vorticity. These points have been checked against 
data published since the time of the poll and 
the results are listed in Table 2 with some 
additions to include authors not included in 
Probstein’s original poll. Several points given 
by Probstein have not been included; however, 
they also fall near the curve given for no second- 
order pressure gradient [see equation (2.27f)]. 
The numerical results of Hayes and Probstein 
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2-O 

1.8 

I.6 

I.4 
(NO PRESSURE GRADIENT) 

I.2 

08 

0.6 

0 
0 al 02 0.3 04 05 06 @7 MI Q9 I-0 i-l 1.4 I.7 I.8 I.9 20 

-x,$ovx,(ol = -f,“IO~/f,” (01 

Fit,. 17. Coefficient in the skin friction expression in Hayes and Probstein’s (21 form [see equations 
14.2) and 4.4)]. 

0 VAN DYKE 

4 
_ ..-.i 

-x15 (0)/X5(O) = - 2 T ‘(0)/q ’ (01 

Ftc;. 18. Coefficient in the beat-transfer expression in &yes anti Prohstrin’s [2] 
form [see equations (4.3) and (4.S)J. 
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Table 2. Comparison wifh ofher authors 

{a) Second-order pressure gradient nof included 
__~_.___ ..__ -___~~~._-7?--= 

Author al b, b, * w Reference 
---_--~ -- 

Probstein 044 1.28 -+O I.0 1 Unpublished 
and Kemp 

Cheng and 0.495 1.34 -0 0.71 I 17 
Chang 044 0.88 0.40 0.71 1 17 

Maslen o-45 I.2 +O 1.0 1 18 

Lenard 0,403 0*700 1.00 0.76 0.58 19 

0.425 0.783 0.75 0,451 0.893 0.50 I I 0.484 1.044 0.25 0.508 I.169 0.10 I I i 
_c_____ _______-_----~_--__~-~_-- 

(b) Second-order pressure gradient included 
-___~- ----- --- 

Author 

Van Dyke 

Results 
obtained 
herein 

al fil b, 
-- 

0.482 1.062 0.20 

I.1111 2.7858 2.00 
0.9385 2.2698 1.40 
0.8150 I .9064 l+Kl 

0.6764 1.5272 0.60 0.5181 I.1357 0.20 

D w Reference 
--- ----__ 
0.70 I 1 

0.70 O-50 

I 

1 1 

[2] p. 372, have not been included since, as Cheng II. The Reynolds nuPnber dejined by Ferri. 
and Chang [17] point out, no comparison can Zakkay and Ting 
be made since some of the conditions under In order to compare the results obtained herein 
which the computations were made have not with those of Ferri, Zakkay and Ting [S] we 
been included in Hayes and Probstein’s book. must introduce their Reynolds number which is 

If we let defined as 

4 a 1 + a,b,(1-Gj’2) QB (4.5b) xf ---_ p;n*t’(h:j,j 
(4.6a) 

i: a 1 + b&J’-(d’a) sr, (4.4b) pz -- 

where where ,o: = stagnation point density, hzO = free 

0, z - \/J(2) $$; 
stream stagnation enthalpy, pz = viscosity for 

5 
(4.5C) stagnation conditions. 

Using the definitions for 6 and Rf and also 

(4.k) 
using some thermodynamic relations we can 
show that 

then we can compute the quantities given in 
Table 2.7 

t Added in proof: It should be pointed out here that 
the values given for Lenard [I91 in Table 2 and Figures (4&b) 
17 and 18 have been corrected in an addendum to his 
original work and bring complete agreement with the Figure 19 shows a comparison of results 
results obtained herein. obtained herein with those of Ferri. Zakkay and 
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2 4 6 8 IO 20 40 60 100 200 ‘ 
R,XlO-2 

FIG. 19. Comparison of results contained herein with 
Ferri, Zakkay and Ting [5], and Hickman [14]. 

Ting [5], Fig. 9. The values used in plotting the 
lower curve of the figure were obtained from 
Fig. 18 for 6, = O-4. We see that the results 
obtained herein do not agree well with Ferri, 
Zakkay and Ting. 

III. The Reynolds number of Hickman 
Hickman [14] has defined a Reynolds number 

as follows : 

where =V:, p:, and & are the velocity, density 
and viscosity respectively behind the shock, and 
D* is the body nose diameter. 

Using this definition of Res, the definition of 
E, and some thermodynamic relations we find 
that 

6 = 2/(Z) 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

C (Y - l>(r + 1)*M4, 
---- I 

l,JiZ 

VrMi - (Y - l)lKr - w: + 21 
1 

2/( ReJ (4.W ,I: 

If this relation is used along with (4.6) then 
we can plot Hickman’s least squares fit to his 
experimental data on Fig. I9 for comparison 11. 

with other theories and experiments. We see 
that the results of Hickman agree well with the 
results obtained herein while Ferri et al.‘s results 12. 
do not. We should remember, however, that for a 
proper comparison we should include all of the I’. 
second-order effects in the analysis since Hick- 14. 
man’s experiments include them. 

10 
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RhmC-On a examine l’influence d’un ecoulement rotationnel exterieur sur une couche limite 
laminaire compressible dans la region du point d’arret dun corps arrondi de revolution. Dans le cas 
considere le tourbillon est engendre par une onde de choc courbe formee devant le corps qui se deplace 
a une vitesse supersonique. La methode de solution utilisee est due a;Van Dyke et consiste a resoudre 
les equations de la couche limite du ler ordre (ou de Prandtl) et ensuite a resoudre des equations du 
second ordre pour l’effet du tourbillon en retenant les termes du second ordre par rapport a un 
paramttre de perturbation relic a l’inverse de la racine carree dun nombre de Reynolds. 

La premiere etape de la solution a la fois des equations du ler ordre et du second ordre pour 
l’interaction turbulente est la reduction des equations aux d&iv&es partielles a des equations differen- 
tielles au moyen d’un developpement en serie de Blasius. On a inttgre alors numeriquement les 
equations differentielles obtenues. On a presente les resultats de l’integration des equations pour les 
deux premiers termes de la strie correspondant aux equations du ler ordre et pour un terme de la strie 
correspondant aux equations du 2eme ordre. Ces resultats ont 6te obtenus pour une gamme de rapports 
de temperature de paroi a la temperature du point d’arret. Les resultats obtenus a partir de l’integra- 
tion de ces equations sont compares avec les theories et les experiences d’autres auteurs. On a trouvt 
une bonne concordance avec les theories de certains auteurs lorsqu’on a suppose nul un gradient de 
pression du a l’interaction tourbillonnaire. On a trouvt cependant que cette simplification n’est pas 
permise en general. On a trouvt aussi une concordance avec un groupe de resultats exptrimentaux, 
mais cette comparaison n’a pas beaucoup de sens puisque l’analyse actuelle ne comprend seulement 
que l’effet du tourbillon et non d’autres effets de second ordre qui peuvent Cgalement &tre importants. 
Cependant puisque les equations du second ordre sont lineaires les autres effets du second ordre peuvent 
Ctre calcules separement et superposes a l’effet tourbillonnaire afin d’obtenir une theorie complete de 

second ordre. 

Zusammenfassung-Der Einfluss lusserer Verwirbelung auf die laminare, kompressible Grenzschicht 
wird im Staupunktbereich eines achssymmetrischen, stumpfen Korpers untersucht. Im betrachteten 
Fall wird die Verwirbelung von einer gekriimmten Stosswelle erzeugt, die von dem mit Uberschall 
bewegten Korper hervorgerufen wird. Die Losungsmethode stammt von Van Dyke und beruht darauf, 
erst Grenzschichtgleichungen erster Ordnung (nach Prandtl) und dann fur den Wirbeleffekt Gleichun- 
gen zweiter Ordnung eines Storparameters zu verstehen, der auf die reziproke Quadratwurzel einer 

Reynoldszahl bezogen wird. 
Der erste Schritt in der Losung, sowohl der Gleichungen erster als such zweiter Ordnung, fur die 

Wirbelwechselwirkung, besteht darin, die partiellen Differentialgleichungen nach einer Blasius- 
Reihenentwicklung auf gewtihnliche Differentialgleichungen zu reduzieren. Die resultierenden 
gewohnlichen Differentialgleichungen werden numerisch integriert. Integrationsergebnisse sind 
angegeben fur die Gleichung erster Ordnung fur die ersten beiden Glieder der Reihe und fiir ein Glied 
der Reihe der Gleichungen zweiter Ordnung. Diese Ergebnisse liessen sich fiireineVielzah1 von Uerhalt- 
nissen der Wandtemperatur zue Staupunkttemperatur erhalten. Die aus die Integration der Gleichungen 
erzielten Ergebnisse werden mit der Theorie und den Versuchen anderer Autoren verglichen. Gute 
Ubereinstimmung mit anderen Autoren ergibt sich, wenn der auf der Wirbelwechselwirkung beru- 
hende Druckgradient gleich Null gesetzt wird. Allgemein ist diese Vereinfachung-wie sich ergab- 
jedoch nicht statthaft. Fiir eine bestimmte Versuchsreihe zeigte sich ebenfalls Ubereinstimmung, doch 
ist ein Vergleich nicht charakteristisch, da die gegenwartige Analyse nur den Einfluss der Verwirbelung 
einschliesst und keine anderen Effekte zweiter Ordnung, die gleich wichtig sein konnen. Da jedoch die 
Gleichungen zweiter Ordnung linear sind, lassen sich diese anderen Effekte zweiter Ordnung getrennt 
berechnen und dem Wirbeleffekt iiberlagern, womit eine vollstlndige Theorie zweiter Ordnung zu 

erhalten ist. 
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~~HHoTaqnJi-II;1~~i~JIOt:L I~;iClfiHIle BHeiUiieii 3aBHxpeHHOCTLi 13 O&IaCTiI iipHTRYeCKOi% TOYKII 

OCeCi4MnieTpiiYHOI~O TjWOI’O TeJia !!a .?IaMfiHapHhiti riOi~paH&IYHhIii C7IOti CHWMaeMOt XEHAKOCTR. 

PaCCMaTpMBaeTCfi CJIyYai8, KOi’aa :laBiIXpeHHOCTJ> CO:l~EieTcfi KpHBOJiMHetiHbIM I’OJIOBHbIni 

CKa’iKOM ?_rUIOTHeHWr, 06pa8~tWhIM :>TIdnI TeZIO>i, nepe~e~ai0~Hswi CO cBepxaByKorioik 

CiiOpOCTbIO. klCiIOJIb~~yeMbi6I MeTOA pei!IeHHH IipPIHa~JieEUIT Bail &OiEy II COCTOMT B peiiIeHEIl1 

~p~BHeHi&i iiorpaiiwiHoiw (‘:rofi riepBor0 rioprrarta @r&I npaHaT.,iH) 11 3BTBM pelrIeKw ypasIir- 

liiii~ BTOpOrO riOpfii;lKa HJIfi :t@&‘iiTki 3aBHXpeHfiOt’TiI, !‘Je riO;r BTOpbiM rIOpR~KOM riO~pa:+yMt~- 

H:,eTCR BTOpOli IIOpHfiOii Ii IIap;lVeTJ)e l3O:DIyl1[PHElfI. CBRRaHHOM 0 OhpaTHbIM KB~~paTHbInl 

IiOpHeM il:i YLICJI~ ~‘f3~iHO.Zb;(Ca. 

nepBhI>i iiiarOJl 13 pt’llIt?HHlI iiali j-paIll!eHdI rlepiJOi% iiO~ffi~fikl, Tali M ypkiBHeH&I~ BTOpOI’O 

II, pHs!ia :(.?fi ll~~~Il~lO~ei~~Tl~~i~ :3aBHXpeHHOCTe$i HBJIHeTCH cHefieH&ie ~i@@epea~aanbIrbrx 

ypaBHellIiii 11 ‘1HCTiiMX irpo113BO~Hbix ii O~bilW~l3~HHbInl ~~l,@~epeH~Wi~bHbi?vl ypaBHt:- 

mfm II~T”“’ p”:3”IoEwi’ifi H J’fifi B.~a:3awa. SaTeli rionyYeHHLrr O6bIi~iiOReHHbIt’ 

~!I~~~epe~i!~Iia~ib!i!~ie ypa~iieii!iH IIiiTerptIpyH)Tcfi ‘iRC.iieHHO. I~~‘kIBe~eHhI pe:1?‘:ILTaTbi IIHTeP 

pIlporsa1iIus ypaBiieiis&i xnfi riepBbrx ;Ti3yx YJIRHOB pfijla B czyYae ypaBrieI3rIi4 nepf3oro r!OpHAKil 

I, &,Ifi O~liOl’O ‘I.~eir8 I’“#1 ;I!Ifl ~p~H!ieHHt BTOpOI‘O 110pfi~iiia. :~)Thi ~aHHLie iIOJIyYeHbi &IH 

ileaoi~o pfi~a oT~ioiIieiiiiii Te3IriepaTypbI iia cTe13Ke ii TenillepaType KpLITHYeCKOZi TOYK11 y 

He~“iI~iHbI. ~aHHb!P, rio~i~Yeilw~ie riyTenI 11HTerp”p0”“!!“” BTLlx ypaisrrefirdi, CpaBHIIBaiOTCfi 

t’ TeopeTiIYtw~ii~Ili 11 :fii(‘iie~fMMeiiT;~JrLi~hi~l~i ,~auimma apyrax ar3Topon. HaSi~eiio xopoiriec 

,‘, OTBeTCTUIl,? t’ TeOpeTlI~lecKll\l~r ~AHIlhiMil HeiFOTO~bIX XpyI’MX aRTOpOB I1 CnyYat?, Iior;la 

131 asIieiiT ;~aB;reerIfi, I~O~1HllliHlclIl~e~~~ 13 ~)e:lj~.VbTaTt’ i33akIMo~t9icTfs~I~ 13k1xpt4, iIoJIaraeTcfi 
I)RHHLIM Ii~.IIfO. ~)~lIkiliO !_t’TkiliOR~t’llO. YTO HooC,rx~r T~KOR piipo~twIe iw ,&~~I,wT~IM~. KcTa- 

liOBJIeiiO TaK?KC COO’TBt’TCTHMl’ (’ IIt’liOTOJ~0ii COHOli!‘lIHOCTbiO :~lEClIe~~IiMeiiT~l.?biii~ix AaKHbiX. 

110 9TO CpaBHeHiW HP IOlt’W liOJIbIllOi’O :waYeHlIfI, T.K. rrpI3se~efiiihIir UHa:IH:% BKJrIOYaPT 

‘I’( XbfiO 3@&t’KT ~litHMX~~PIlfiOt’TI1 II Ilt’ i3liJiiOYat!l~ IiaIiHe-:I1160 q)yl?Ie 3@@?iETbI BTOpOrO IIO- 

plI~ii;a, IiOTOpbIt’ nlOryT i/biTL CTO;IL iKe IlaFKHLI. ()~HaKO, rIO(‘liOJIbii~ ~pU3HeHlIfl BTOpOi’” 

ri,,pfinira HH~RiOT(‘H zliiieti1ihinrfI, q’yi’i1’ 3tj@eKTbi BTO&lOI’O IIopn~Kia MOH(iI0 paccYHTaTh 

oT~eJrb,io !I c~~al~1!!1T~~ t’ Ri~@IiTO11 :laI3lISpt’HHOCTiI ;UiH rionyYe1iclcr ilO.nlfr~Ix ~ari1rhix ri TeOpflIr , 


